Publications by authors named "Royce Mohan"

Alzheimer's Disease (AD) pathogenesis is thought to begin up to 20 years before cognitive symptoms appear, suggesting the need for more sensitive diagnostic biomarkers of AD. In this report, we demonstrated pathological changes in retinal Müller glia significantly earlier than amyloid pathology in AD mouse models. By utilizing the knock-in NLGF mouse model, we surprisingly discovered an increase in reticulon 3 (RTN3) protein levels in the NLGF retina as early as postnatal day 30 (P30).

View Article and Find Full Text PDF

The vesicant sulfur mustard (SM) is a chemical warfare agent that causes acute and chronic injury to the cornea and proximal anterior segment structures. Despite clinical evidence of SM-exposure causing unexplained retinal deficits, there have been no animal studies conducted to examine the retinal toxicity of this vesciant. The cardinal hallmark of retinal response to stressors or injury is the activation of reactive gliosis, a cellular process largely governed by Müller glia.

View Article and Find Full Text PDF

Retinal scarring with vision loss continues to be an enigma in individuals with advanced age-related macular degeneration (AMD). Müller glial cells are believed to initiate and perpetuate scarring in retinal degeneration as these glial cells participate in reactive gliosis and undergo hypertrophy. We previously showed in the murine laser-induced model of choroidal neovascularization that models wet-AMD that glial fibrillary acidic protein (GFAP) expression, an early marker of reactive gliosis, increases along with its posttranslational modification citrullination.

View Article and Find Full Text PDF

Muller glia (MG) play a central role in reactive gliosis, a stress response associated with rare and common retinal degenerative diseases, including age-related macular degeneration (AMD). The posttranslational modification citrullination​ targeting glial fibrillary acidic protein (GFAP) in MG was initially discovered in a panocular chemical injury model. Here, we report in the paradigms of retinal laser injury, a genetic model of spontaneous retinal degeneration (JR5558 mice) and human wet-AMD tissues that MG citrullination is broadly conserved.

View Article and Find Full Text PDF

The cornea is the most innervated tissue in the human body. Myelinated axons upon inserting into the peripheral corneal stroma lose their myelin sheaths and continue into the central cornea wrapped by only nonmyelinating corneal Schwann cells (nm-cSCs). This anatomical organization is believed to be important for central vision.

View Article and Find Full Text PDF

The type III intermediate filament (IF) proteins vimentin and desmin are sequentially overexpressed in stromal myofibroblasts over the period when fibrosis sets in after corneal injury. Prior findings have revealed vimentin-deficient mice are significantly protected from corneal fibrosis after alkali injury, which has implicated this IF protein as an important regulator of corneal fibrosis. It has remained as yet unproven whether desmin contributes in any significant manner to corneal fibrosis.

View Article and Find Full Text PDF

Recent studies have shown that constitutive activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in Schwann cells (SCs) increases myelin thickness in transgenic mice. In this secondary analysis, we report that these transgenic mice develop a postnatal corneal neurofibroma with the loss of corneal transparency by age six months. We show that expansion of non-myelinating SCs, under the control of activated ERK1/2, also drive myofibroblast differentiation that derives from both SC precursors and resident corneal keratocytes.

View Article and Find Full Text PDF

Citrullination is an important posttranslational modification that occurs during retinal gliosis. We examined the expression of peptidyl arginine deiminases (PADs) to identify the PADs that mediate citrullination in a model of alkali-induced retinal gliosis. Mouse corneas were exposed to 1.

View Article and Find Full Text PDF

Purpose: A hallmark of retinal gliosis is the increased detection and modification of the type III intermediate filament (IF) proteins vimentin and glial fibrillary acidic protein (GFAP). Here, we investigated vimentin and GFAP in Müller glia in a mouse model of alkali injury, focusing on the posttranslational modification of citrullination.

Methods: Mice were injured by corneal exposure to 1.

View Article and Find Full Text PDF

Purpose: The transient middle cerebral artery occlusion (MCAO) model of stroke is one of the most commonly used models to study focal cerebral ischemia. This procedure also results in the simultaneous occlusion of the ophthalmic artery that supplies the retina. Retinal cell death is seen days after reperfusion and leads to functional deficits; however, the mechanism responsible for this injury has not been investigated.

View Article and Find Full Text PDF

Withaferin A (WFA), initially identified as a compound that inhibits experimental angiogenesis, has been shown to bind to soluble vimentin (sVim) and other type III intermediate filament (IF) proteins. We review WFA's dose-related activities (Section 1), examining nanomolar concentrations effects on sVim in cell proliferation and submicromolar effects on lamellipodia and focal adhesion formation. WFA effects on polymeric IFs are especially interesting to the study of cell migration and invasion that depend on IF mechanical contractile properties.

View Article and Find Full Text PDF

Vimentin is a newly recognized target for corneal fibrosis. Using primary rabbit corneal fibroblasts and myofibroblasts we show that myofibroblasts, unlike fibroblasts, display impaired cell spreading and cell polarization, which is associated with increased levels of soluble serine-38 phosphorylated vimentin (pSer38Vim). This pSer38Vim isoform is inefficiently incorporated into growing vimentin intermediate filaments (IFs) of myofibroblasts during cell spreading, and as a result, myofibroblasts maintain higher soluble pSer38Vim levels compared to fibroblasts.

View Article and Find Full Text PDF

Withaferin A (WFA) is a natural product that binds to soluble forms of the type III intermediate filament (IF) vimentin. Currently, it is unknown under what pathophysiological contexts vimentin is druggable, as cytoskeltal vimentin-IFs are abundantly expressed. To investigate druggability of vimentin, we exploited rabbit Tenon's capsule fibroblast (RbTCF) cell cultures and the rabbit glaucoma filtration surgical (GFS) model of fibrosis.

View Article and Find Full Text PDF

The type III intermediate filaments (IFs) are essential cytoskeletal elements of mechanosignal transduction and serve critical roles in tissue repair. Mice genetically deficient for the IF protein vimentin (Vim(-/-)) have impaired wound healing from deficits in myofibroblast development. We report a surprising finding made in Vim(-/-) mice that corneas are protected from fibrosis and instead promote regenerative healing after traumatic alkali injury.

View Article and Find Full Text PDF

Purpose: To develop an animal model for simultaneously eliciting corneal angiogenesis and retinal gliosis that will enable the assessment of inhibitor efficacy on these two pathological processes in separate anatomic sites of the ocular globe.

Methods: Four to six week-old mice in a C57BL/6J background were anesthetized and 0.15 N NaOH was applied to the cornea, followed by mechanical scraping of the epithelium from limbus and central cornea.

View Article and Find Full Text PDF

Gliosis is a biological process that occurs during injury repair in the central nervous system and is characterized by the overexpression of the intermediate filaments (IFs) glial fibrillary acidic protein (GFAP) and vimentin. A common thread in many retinal diseases is reactive Müller cell gliosis, an untreatable condition that leads to tissue scarring and even blindness. Here, we demonstrate that the vimentin-targeting small molecule withaferin A (WFA) is a novel chemical probe of GFAP.

View Article and Find Full Text PDF

Acute and chronic exposure to ultraviolet (UV) wavelengths in sunlight can cause adverse reactions in exposed areas of the skin and corneas. UV exposure up-regulates the synthesis of Matrix Metalloproteinses (MMPs) and evidence suggests these enzymes mediate tissue damage. Therefore MMP gene activity can serve as a surrogate marker for bioassays.

View Article and Find Full Text PDF

The natural product withaferin A (WFA) exhibits antitumor and antiangiogenesis activity in vivo, which results from this drug's potent growth inhibitory activities. Here, we show that WFA binds to the intermediate filament (IF) protein, vimentin, by covalently modifying its cysteine residue, which is present in the highly conserved alpha-helical coiled coil 2B domain. WFA induces vimentin filaments to aggregate in vitro, an activity manifested in vivo as punctate cytoplasmic aggregates that colocalize vimentin and F-actin.

View Article and Find Full Text PDF

The immunoproteasome, having been linked to neurodegenerative diseases and hematological cancers, has been shown to play an important role in MHC class I antigen presentation. However, its other pathophysiological functions are still not very well understood. This can be attributed mainly to a lack of appropriate molecular probes that can selectively modulate the immunoproteasome catalytic subunits.

View Article and Find Full Text PDF

Soluble vascular endothelial growth factor receptor‐1 (s‐flt) may be critical for a variety of human corneal angiogenic conditions

View Article and Find Full Text PDF

Purpose: To characterize the angiogenic and inflammatory responses of human choroidal endothelial cells (HCECs) to stimulators and inhibitors of the ubiquitin proteasome pathway (UPP).

Methods: The regulation of the UPP by the inhibitor withaferin A and its congener, withanolide D, two natural products derived from the medicinal plant Withania somnifera was assessed in the three-dimensional endothelial cell sprouting assay (3D-ECSA), by using HCEC- and human umbilical vein endothelial cell (HUVEC)-derived spheroids embedded in a collagen I matrix. Western blot analysis was used to investigate the effect of withanolides on IkappaB-alpha, polyubiquitination, and heme oxygenase (HO)-1 regulation in HCEC and HUVEC cultures.

View Article and Find Full Text PDF

The natural product withaferin A (WFA) is a potent angiogenesis inhibitor and it targets the ubiquitin-proteasome pathway in vascular endothelial cells. We generated a biotinylated affinity analog WFA-LC(2)B for use as a probe to study angiogenesis. WFA-LC(2)B inhibits angiogenic sprouting in vitro and it causes levels of ubiquitinated proteins to increase in tumor necrosis factor-alpha-treated human umbilical vein endothelial cells, confirming the retention of WFA's biological activity.

View Article and Find Full Text PDF

Small molecules designed to specifically activate or inactivate protein functions have been useful to study biological processes. PROTACS are small molecule chimera which comprise a ligand and a peptide recognition motif for an E3 ligase. These novel reagents exploit the ubiquitin-mediated proteasome degradation pathway to target the ligand-bound protein for intracellular degradation.

View Article and Find Full Text PDF

The medicinal plant Withania somnifera is widely researched for its anti-inflammatory, cardioactive and central nervous system effects. In Ayurveda , the major Traditional Indian medicine system, extracts from W. somnifera are distinctively employed for the treatment of arthritis and menstrual disorders.

View Article and Find Full Text PDF