Publications by authors named "Royce D"

Persons with cystic fibrosis (CF), starting in early life, show intestinal microbiome dysbiosis characterized in part by a decreased relative abundance of the genus is a major producer of the intestinal short chain fatty acid propionate. We demonstrate here that cystic fibrosis transmembrane conductance regulator-defective (CFTR-/-) Caco-2 intestinal epithelial cells are responsive to the anti-inflammatory effects of propionate. Furthermore, isolates inhibit the IL-1β-induced inflammatory response of CFTR-/- Caco-2 intestinal epithelial cells and do so in a propionate-dependent manner.

View Article and Find Full Text PDF

Understanding the relationship between the composition of the human gut microbiota and the ecological forces shaping it is of great importance; however, knowledge of the biogeographical and ecological relationships between physically interacting taxa is limited. Interbacterial antagonism may play an important role in gut community dynamics, yet the conditions under which antagonistic behaviour is favoured or disfavoured by selection in the gut are not well understood. Here, using genomics, we show that a species-specific type VI secretion system (T6SS) repeatedly acquires inactivating mutations in Bacteroides fragilis in the human gut.

View Article and Find Full Text PDF

Understanding the relationship between the composition of the human gut microbiota and the ecological forces shaping it is of high importance as progress towards therapeutic modulation of the microbiota advances. However, given the inaccessibility of the gastrointestinal tract, our knowledge of the biogeographical and ecological relationships between physically interacting taxa has been limited to date. It has been suggested that interbacterial antagonism plays an important role in gut community dynamics, but in practice the conditions under which antagonistic behavior is favored or disfavored by selection in the gut environment are not well known.

View Article and Find Full Text PDF

Cerebrospinal fluid (CSF), a fluid found in the brain and the spinal cord, is of great importance to both basic and clinical science. The analysis of the CSF protein composition delivers crucial information in basic neuroscience research as well as neurological diseases. One caveat is that proteins measured in CSF may derive from both intrathecal synthesis and transudation from serum, and protein analysis of CSF can only determine the sum of these two components.

View Article and Find Full Text PDF

Persistent central nervous system (CNS) inflammation, as seen in chronic infections or inflammatory demyelinating diseases such as Multiple Sclerosis (MS), results in the accumulation of various B cell subsets in the CNS, including naïve, activated, memory B cells (Bmem), and antibody secreting cells (ASC). However, factors driving heterogeneous B cell subset accumulation and antibody (Ab) production in the CNS compartment, including the contribution of ectopic lymphoid follicles (ELF), during chronic CNS inflammation remain unclear and is a major gap in our understanding of neuroinflammation. We sought to address this gap using the Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) model of progressive MS.

View Article and Find Full Text PDF

Background: The mechanisms driving multiple sclerosis (MS), the most common cause of non-traumatic disability in young adults, remain unknown despite extensive research. Especially puzzling are the underlying molecular processes behind the two major disease patterns of MS: relapsing-remitting and progressive. The relapsing-remitting course is exemplified by acute inflammatory attacks, whereas progressive MS is characterized by neurodegeneration on a background of mild-moderate inflammation.

View Article and Find Full Text PDF

Objective: We sought to develop molecular biomarkers of intrathecal inflammation to assist neurologists in identifying patients most likely to benefit from a range of immune therapies.

Methods: We used Luminex technology and index determination to search for an inflammatory activity molecular signature (IAMS) in patients with inflammatory demyelinating disease (IDD), other neuroinflammatory diagnoses, and noninflammatory controls. We then followed the clinical characteristics of these patients to find how the presence of the signature might assist in diagnosis and prognosis.

View Article and Find Full Text PDF

Because PEGylated molecules exhibit different physicochemical properties from those of the parent molecules, PEGylated interferonβ-1a (pegIFNβ-1a) may be able to be used with retained bioactivity in Multiple Sclerosis (MS) patients who have previously developed neutralizing antibodies (NABs) to recombinant interferonβ (rIFNβ). Hence, the objective of the present study was to test whether pegIFNβ-1a is less antigenic for NABs in vitro than rIFNβ. Two in vitro assays were used to quantitate NABs in 115 sera obtained from MS patients included in the INSIGHT study: the cytopathic effect (CPE) assay, and the MxA protein induction assay.

View Article and Find Full Text PDF

Talazoparib, a potent PARP inhibitor, has shown promising clinical and pre-clinical activity by inducing synthetic lethality in cancers with germline mutations. Conventional oral delivery of Talazoparib is associated with significant off-target effects, therefore we sought to develop new delivery systems in the form of an implant loaded with Talazoparib for localized, slow and sustained release of the drug at the tumor site in -deficient breast cancer. Poly(lactic-co-glycolic acid) (PLGA) implants (0.

View Article and Find Full Text PDF

We evaluated the effects of pegylated-interferonβ-1a (pegIFNβ) therapy on intrathecal antibody responses, disability progression, and viral load in the CNS in mice infected with the Theiler's virus (TMEV), an animal model of progressive disability in Multiple Sclerosis (MS). The lack of a direct antiviral activity in the CNS, the absence of any effect upon the intrathecal immune response, and the failure to treat disease progression, indicate that the immunomodulatory effects of pegIFNβ-1a likely occur in the systemic circulation rather than within the CNS. These results may be relevant to the relative lack of effect of IFNβ in progressive MS relative to relapsing MS.

View Article and Find Full Text PDF

Teriflunomide is an oral therapy approved for the treatment of relapsing remitting multiple sclerosis (MS), showing both anti-inflammatory and antiviral properties. Currently, it is uncertain whether one or both of these properties may explain teriflunomide's beneficial effect in MS. Thus, to learn more about its mechanisms of action, we evaluated the effect of teriflunomide in the Theiler's encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) model, which is both a viral infection and an excellent model of the progressive disability of MS.

View Article and Find Full Text PDF

Bromodomain inhibitors (JQ1 and I-BET 762) are a new generation of selective, small molecule inhibitors that target BET (bromodomain and extra terminal) proteins. By impairing their ability to bind to acetylated lysines on histones, bromodomain inhibitors interfere with transcriptional initiation and elongation. BET proteins regulate several genes responsible for cell cycle, apoptosis and inflammation.

View Article and Find Full Text PDF

After intracerebral infection with the Theiler's Murine Encephalomyelitis Virus (TMEV), susceptible SJL mice develop a chronic-progressive demyelinating disease, with clinical features similar to the progressive forms of multiple sclerosis (MS). The mice show progressive disability with loss of motor and sensory functions, which can be assessed with multiple apparatuses and protocols. Among them, the Rotarod performance test is a very common behavioral test, its advantage being that it provides objective measurements, but it is often used assuming that it is straightforward and simple.

View Article and Find Full Text PDF

LG101506 was originally synthesized to overcome some of the undesirable side effects of rexinoids. We compared the anticarcinogenic action of LG101506 and LG100268 and for the first time showed that both drugs are useful for prevention of lung cancer in A/J mice. These molecules markedly reduced tumor number, tumor size, and total tumor burden, when chronically administered to A/J mice that had been initiated with the mutagenic carcinogen, vinyl carbamate.

View Article and Find Full Text PDF

Two new analogues of CDDO-Imidazolide (CDDO-Im), namely 1-[2-Cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]-4(-pyridin-2-yl)-1H-imidazole ("CDDO-2P-Im") and 1-[2-Cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]-4(-pyridin-3-yl)-1H-imidazole ("CDDO-3P-Im") have been synthesized and tested for their potential use as chemopreventive drugs. At nanomolar concentrations, they were equipotent to CDDO-Im for inducing differentiation and apoptosis in U937 leukemia cells. As inflammation and oxidative stress contribute to carcinogenesis, we also assessed their cytoprotective potential.

View Article and Find Full Text PDF

Lung cancer accounts for the highest number of cancer-related deaths in the USA, highlighting the need for better prevention and therapy. Activation of the Nrf2 pathway detoxifies harmful insults and reduces oxidative stress, thus preventing carcinogenesis in various preclinical models. However, constitutive activation of the Nrf2 pathway has been detected in numerous cancers, which confers a survival advantage to tumor cells and a poor prognosis.

View Article and Find Full Text PDF

Poly-ADP ribose polymerase (PARP) inhibitors are effective for the treatment of BRCA-deficient tumors. Women with these mutations have an increased risk of developing breast cancer and would benefit from effective chemoprevention. This study examines whether the PARP inhibitors, veliparib and olaparib, delay mammary gland tumor development in a BRCA1-deficient (BRCA1(Co/Co);MMTV-Cre;p53(+/-)) mouse model.

View Article and Find Full Text PDF

Novel drugs and drug combinations are needed for the chemoprevention and treatment of cancer. We show that the histone deacetylase inhibitor vorinostat [suberoylanilide hydroxamic acid (SAHA)] and the methyl ester or ethyl amide derivatives of the synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO-Me and CDDO-Ea, respectively) cooperated to inhibit the de novo synthesis of nitric oxide in RAW 264.7 macrophage-like cells and in primary mouse peritoneal macrophages.

View Article and Find Full Text PDF

Novel drugs are needed for the prevention and treatment of breast cancer. Synthetic triterpenoids are a promising new class of compounds with activity in a variety of preclinical cancer models. We tested activity of the methyl ester derivative of the synthetic triterpenoid, 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO-Me), in a relevant model of estrogen receptor-negative breast cancer, the polyoma-middle T (PyMT), in which the oncoprotein drives carcinogenesis.

View Article and Find Full Text PDF

The breast cancer-associated gene 1 (BRCA1) is the most frequently mutated tumor suppressor gene in familial breast cancers. Mutations in BRCA1 also predispose to other types of cancers, pointing to a fundamental role of this pathway in tumor suppression and emphasizing the need for effective chemoprevention in these high-risk patients. Because the methyl ester of the synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO-Me) is a potent chemopreventive agent, we tested its efficacy in a highly relevant mouse model of BRCA1-mutated breast cancer.

View Article and Find Full Text PDF

Pancreatic cancer is the fourth leading cause of cancer-related deaths in the United States and is nearly always fatal. Whereas early detection offers the most promising approach for reducing the mortality of this disease, there is still a need to develop effective drugs for the prevention and treatment of pancreatic cancer. We tested two promising classes of noncytotoxic drugs, synthetic oleanane triterpenoids and rexinoids, for the prevention of carcinogenesis in the highly relevant LSL-Kras(G12D/+);LSL-Trp53(R127H/+);Pdx-1-Cre (KPC) mouse model of pancreatic cancer.

View Article and Find Full Text PDF

We tested members of two noncytotoxic classes of drugs, synthetic oleanane triterpenoids and rexinoids, both as individual agents and in combination, for the prevention and treatment of carcinogenesis in a highly relevant animal model of lung cancer. Lung adenocarcinomas were induced in A/J mice by injection of the carcinogen vinyl carbamate. Mice were fed drugs in diet, beginning 1 week after the carcinogen challenge for prevention or 8 weeks later for treatment.

View Article and Find Full Text PDF

Purpose: Evidence implicating oxidative stress in the pathogenesis of age-related macular degeneration suggests that antioxidant therapy could play a role in preventing its progression. The aim of this study was to determine whether derivatives of the triterpenoid (TP) 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO; CDDO-imidazolide [-Im], CDDO-ethylamide [-EA], and CDDO-trifluoroethylamide [-TFEA]) confer cytoprotection from oxidative- and photooxidative-induced cellular damage and to explore the molecular mechanisms of this cytoprotection.

Methods: Retinal pigment epithelial and retinal photoreceptor cell lines were treated with TP derivatives.

View Article and Find Full Text PDF