J Enzyme Inhib Med Chem
December 2016
Novel bisindolyl-cycloalkane indoles resulted from the reaction of aliphatic dialdehydes and indole. As bisindolyl-natural alkaloid compounds have recently been reported as inhibitors of the methicillin-resistant Staphylococcus aureus (MRSA)-pyruvate kinase (PK), we tested our novel compounds as MRSA PK inhibitors and now report first inhibiting activities. We discuss structure-activity relationships of structurally varied compounds.
View Article and Find Full Text PDFAs part of an ongoing study to elucidate the SAR of bisindole alkaloid inhibitors against the evolutionary conserved MRSA pyruvate kinase (PK), we present here the synthesis and biological activity of six dihalogenated analogues of the naturally occurring sponge metabolite deoxytopsentin, including the naturally occurring dibromodeoxytopsentin. The most active compounds displayed potent low nanomolar inhibitory activity against MRSA PK with concomitant significant selectivity for MRSA PK over human PK orthologues. Computational studies suggest that these potent MRSA PK inhibitors occupy a region of the small interface of the enzyme tetramer where amino acid sequence divergence from common human PK orthologues may contribute to the observed selectivity.
View Article and Find Full Text PDFMethicillin-resistant Staphylococcus aureus pyruvate kinase (MRSA PK) has recently been identified as a target for development of novel antibacterial agents. Testing a series of 1,2-bis(3-indolyl)ethanes against MRSA PK has led to the discovery of a potent inhibitor that is selective over human isoforms.
View Article and Find Full Text PDFA novel series of bis-indoles derived from naturally occurring marine alkaloid 4 were synthesized and evaluated as inhibitors of methicillin-resistant Staphylococcus aureus (MRSA) pyruvate kinase (PK). PK is not only critical for bacterial survival which would make it a target for development of novel antibiotics, but it is reported to be one of the most highly connected 'hub proteins' in MRSA, and thus should be very sensitive to mutations and making it difficult for the bacteria to develop resistance. From the co-crystal structure of cis-3-4-dihydrohamacanthin B (4) bound to S.
View Article and Find Full Text PDFCurr Opin Microbiol
October 2013
Novel classes of antimicrobials are needed to address the challenge of multidrug-resistant bacteria. Current bacterial drug targets mainly consist of specific proteins or subsets of proteins without regard for either how these targets are integrated in cellular networks or how they may interact with host proteins. However, proteins rarely act in isolation, and the majority of biological processes are dependent on interactions with other proteins.
View Article and Find Full Text PDFA novel series of hydrazones were synthesized and evaluated as inhibitors of methicillin-resistant Staphylococcus aureus (MRSA) pyruvate kinase (PK). PK has been identified as one of the most highly connected 'hub proteins' in MRSA. PK has been shown to be critical for bacterial survival which makes it a potential target for development of novel antibiotics and the high degree of connectivity implies it should be very sensitive to mutations and thus less able to develop resistance.
View Article and Find Full Text PDFWe have recently mapped the protein interaction network of methicillin-resistant Staphylococcus aureus (MRSA), which revealed its scale-free organization with characteristic presence of highly connected hub proteins that are critical for bacterial survival. Here we report the discovery of inhibitors that are highly potent against one such hub target, staphylococcal pyruvate kinase (PK). Importantly, the developed compounds demonstrate complete selectivity for the bacterial enzyme compared to all human orthologues.
View Article and Find Full Text PDFNovel classes of antimicrobials are needed to address the emergence of multidrug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA). We have recently identified pyruvate kinase (PK) as a potential novel drug target based upon it being an essential hub in the MRSA interactome (Cherkasov, A., Hsing, M.
View Article and Find Full Text PDFNovel classes of antimicrobials are needed to address the challenge of multidrug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA). Using the architecture of the MRSA interactome, we identified pyruvate kinase (PK) as a potential novel drug target based upon it being a highly connected, essential hub in the MRSA interactome. Structural modeling, including X-ray crystallography, revealed discrete features of PK in MRSA, which appeared suitable for the selective targeting of the bacterial enzyme.
View Article and Find Full Text PDFMortality attributable to infection with methicillin-resistant Staphylococcus aureus (MRSA) has now overtaken the death rate for AIDS in the United States, and advances in research are urgently needed to address this challenge. We report the results of the systematic identification of protein-protein interactions for the hospital-acquired strain MRSA-252. Using a high-throughput pull-down strategy combined with quantitative proteomics to distinguish specific from nonspecific interactors, we identified 13,219 interactions involving 608 MRSA proteins.
View Article and Find Full Text PDFNovel antimicrobial targets are urgently needed to overcome rising antibiotic resistance of important human pathogens including methicillin-resistant Staphylococcus aureus (MRSA). Here we report the essentiality and kinetic properties of MRSA pyruvate kinase (PK). Targetron-mediated gene disruption demonstrated PK is essential for S.
View Article and Find Full Text PDFNative phosphodiesterase-5 (PDE5) homodimer contains distinct non-catalytic cGMP allosteric sites and catalytic sites for cGMP hydrolysis. Purified recombinant PDE5 was activated by pre-incubation with cGMP. Relatively low concentrations of cGMP produced a Native PAGE gel shift of PDE5 from a single band position (lower band) to a band with decreased mobility (upper band); higher concentrations of cGMP produced a band of intermediate mobility (middle band) in addition to the upper band.
View Article and Find Full Text PDFPhosphodiesterase-5 (PDE5) is phosphorylated at a single serine residue by cyclic nucleotide-dependent protein kinases. To test for a direct effect of phosphorylation on the PDE5 catalytic site, independent of cGMP binding to the allosteric sites of the enzyme, binding of the catalytic site-specific substrate analog [(3)H]tadalafil to PDE5 was measured. Phosphorylation increased [(3)H]tadalafil binding 3-fold, whereas cGMP caused a 1.
View Article and Find Full Text PDFThe molecular bases for phosphodiesterase 5 (PDE5) catalytic-site affinity for cyclic guanosine monophosphate (cGMP) and potency of inhibitors are poorly understood. Cocrystal structures of PDE5 catalytic (C) domain with inhibitors reveal a hydrogen bond and hydrophobic interactions with Tyr-612, hydrogen bonds with Gln-817, a hydrophobic clamp formed by Phe-820 and Val-782, and contacts with His-613, Leu-765, and Phe-786 [Sung et al. (2003) Nature 425, 98-102; Huai et al.
View Article and Find Full Text PDFThe phosphodiesterase-11A (PDE11) family consists of four splice variants (PDE11A1-PDE11A4) that contain a conserved carboxyl-terminal (C-terminal) catalytic domain that hydrolyzes cAMP and cGMP; the amino-termini (N-termini) vary in length and amino acid sequence. PDE11A2, PDE11A3, and PDE11A4 contain one or more GAF (cGMP-binding phosphodiesterase, Anabaena adenylyl cyclase, and Escherichia coli FhlA) subdomains. In the present study, PDE11A1 and PDE11A2 demonstrated higher affinity for cAMP and cGMP when directly compared to that of the longest isoform, PDE11A4.
View Article and Find Full Text PDFPhosphodiesterase-5 (PDE5) specifically hydrolyzes cGMP, thereby contributing to modulation of intracellular levels of this nucleotide. In the present study, preincubation with cGMP increased PDE5 catalytic activity for cGMP degradation, and it converted the PDE5 catalytic site to a form that was more potently inhibited by each of the three PDE5 catalytic site-specific inhibitors: sildenafil, vardenafil, and tadalafil. These results implied that elevated cGMP initiates a physiological negative feedback on the cGMP pathway by increasing the affinity of the PDE5 catalytic site for cGMP.
View Article and Find Full Text PDFPhosphodiesterase-5 (PDE5) inhibitors (sildenafil, vardenafil, or tadalafil) or phosphorylation by cyclic nucleotide-dependent protein kinase causes an apparent conformational change in PDE5, as indicated by a shift in migration on non-denaturing PAGE gels and an altered pattern of tryptic digestion. Combination of cGMP and a PDE5 inhibitor or phosphorylation does not cause a further gel shift or change in tryptic digest. Phosphorylation of PDE5 is stimulated by inhibitors, and combination of cGMP and inhibitor does not cause further phosphorylation.
View Article and Find Full Text PDFPhosphodiesterase-5 (PDE5) contains a catalytic domain (C domain) that hydrolyzes cGMP and a regulatory domain (R domain) that contains two mammalian cGMP-binding phosphodiesterase, Anabaena adenylyl cyclases, Escherichia coli FhlAs (GAFs) (A and B) and a phosphorylation site for cyclic nucleotide-dependent protein kinases (cNPKs). Binding of cGMP to GAF-A increases cNPK phosphorylation of PDE5 and improves catalytic site affinity for cGMP or inhibitors. GAF-B contributes to dimerization of PDE5, inhibition of cGMP binding to GAF-A, and sequestration of the phosphorylation site.
View Article and Find Full Text PDFPhosphodiesterase-5 (PDE5) is the target for sildenafil, vardenafil, and tadalafil, which are drugs for treatment of erectile dysfunction and pulmonary hypertension. We report here the crystal structures of a fully active catalytic domain of unliganded PDE5A1 and its complexes with sildenafil or icarisid II. These structures together with the PDE5A1-isobutyl-1-methylxanthine complex show that the H-loop (residues 660-683) at the active site of PDE5A1 has four different conformations and migrates 7-35A upon inhibitor binding.
View Article and Find Full Text PDFThe side group of an invariant Gln in cGMP- and cAMP-specific phosphodiesterases (PDE) is held in different orientations by bonds with other amino acids and purportedly discriminates between guanine and adenine in cGMP and cAMP. In cGMP-specific PDE5, Gln(775) constrains the orientation of the invariant Gln(817) side chain, which forms bidentate bonds with 5'-GMP, vardenafil, sildenafil, and 3-isobutyl-1-methylxanthine (IBMX) (Sung, B. J.
View Article and Find Full Text PDFCyclic nucleotide phosphodiesterases (PDEs) have been investigated for years as targets for therapeutic intervention in a number of pathophysiological processes. Phosphodiesterase-5 (PDE5), which is highly specific for guanosine 3'-5'-cyclic-monophosphate (cGMP) at both its catalytic site and its allosteric sites, has generated particular interest because it is potently and specifically inhibited by three drugs: sildenafil (Viagra, Pfizer), tadalafil (Cialis, Lilly-ICOS), and vardenafil (Levitra, Bayer GSK). Previously, we have used [(3)H]cGMP to directly study the interaction of cGMP with the allosteric sites of PDE5, but because cGMP binds with relatively low affinity to the catalytic site, it has been difficult to devise a binding assay for this particular binding reaction.
View Article and Find Full Text PDFCyclic GMP is a critical second messenger signaling molecule in many mammalian cell types. It is synthesized by a family of guanylyl cyclases that is activated in response to stimuli from hormones such as natriuretic peptides, members of the guanylin family, and chemical stimuli including nitric oxide and carbon monoxide. The resulting elevation of cGMP modulates myriad physiological processes.
View Article and Find Full Text PDFThe cGMP-binding cGMP-specific phosphodiesterase (PDE5) contains a catalytic domain that hydrolyzes cGMP and a regulatory (R) domain that contains two GAFs (a and b; GAF is derived from the proteins mammalian cGMP-binding PDEs, Anabaena adenylyl cyclases, and Escherichia coli (FhlA)). The R domain binds cGMP allosterically, provides for dimerization, and is phosphorylated at a site regulated by allosteric cGMP binding. Quaternary structures and cGMP-binding properties of 10 human PDE5A1 constructs containing one or both GAFs were characterized.
View Article and Find Full Text PDFSildenafil, tadalafil, and vardenafil each competitively inhibit cGMP hydrolysis by phosphodiesterase-5 (PDE5), thereby fostering cGMP accumulation and relaxation of vascular smooth muscle. Biochemical potencies (affinities) of these compounds for PDE5 determined by IC(50), K(D) (isotherm), K(D) (dissociation rate), and K(D) ((1/2) EC(50)), respectively, were the following: sildenafil (3.7 +/- 1.
View Article and Find Full Text PDF