Sulfation is gaining increased interest due to the role of sulfate in the bioactivity of many polysaccharides of marine origin. Hence, sulfatases, enzymes that control the degree of sulfation, are being more extensively researched. In this work, a novel sulfatase (SulA1) encoded by the gene was characterized.
View Article and Find Full Text PDFOat () is a cereal grain rich in fibers, proteins, vitamins and minerals. Oats have been linked to several health benefits, such as lowering blood cholesterol levels, counteracting cardiovascular disease and regulating blood sugar levels. This study aimed to characterize two new oat lines with high β-glucan content emanating from ethyl methyl sulphonate mutagenesis on the Lantmännen elite variety Belinda.
View Article and Find Full Text PDFOat (Avena sativa) is a nutritionally important cereal crop that is rich in health-promoting dietary fibers, favorable proteins and polar lipids. In this work, ca. 500 random lines of a mutagenized oat population of high genetic variation were screened for arabinoxylan (AX) content.
View Article and Find Full Text PDFBackground: The marine thermophilic bacterium Rhodothermus marinus can degrade many polysaccharides which makes it interesting as a future cell factory. Progress using this bacterium has, however, been hampered by limited knowledge on media and conditions for biomass production, often resulting in low cell yields and low productivity, highlighting the need to develop conditions that allow studies of the microbe on molecular level. This study presents development of defined conditions that support growth, combined with evaluation of production of carotenoids and exopolysaccharides (EPSs) by R.
View Article and Find Full Text PDFSugarcane processing roughly generates 54 million tonnes sugarcane bagasse (SCB)/year, making SCB an important material for upgrading to value-added molecules. In this study, an integrated scheme was developed for separating xylan, lignin and cellulose, followed by production of xylo-oligosaccharides (XOS) from SCB. Xylan extraction conditions were screened in: (1) single extractions in NaOH (0.
View Article and Find Full Text PDFPrevotella copri DSM18205 is a human gut bacterium, suggested as a next-generation probiotic. To utilize it as such, it is, however, necessary to grow the species in a reproducible manner. Prevotella copri has previously been reported to be highly sensitive to oxygen, and hence difficult to isolate and cultivate.
View Article and Find Full Text PDFMarine macroalgal (seaweed) polysaccharides are highly promising for next-generation applications in several industries. However, despite the reported comprehensive potential of these polysaccharides, commercial products are scarce on the market. Seaweed cultivations are increasing in number and production quantity, owing to an elevated global trend of utilization interest in seaweed.
View Article and Find Full Text PDFIn line with the need to better utilize agricultural resources, and valorize underutilized fractions, we have developed protocols to increase the use of wheat bran, to improve utilization of this resource to additional products. Here, we report sequential processing for extraction of starch, lipids, and proteins from wheat brans with two different particle sizes leaving a rest-material enriched in dietary fiber. Mild water-based extraction of starch resulted in maximum 81.
View Article and Find Full Text PDFThis work presents an evaluation of batch, fed-batch, and sequential batch cultivation techniques for production of R. marinus DSM 16675 and its exopolysaccharides (EPSs) and carotenoids in a bioreactor, using lysogeny broth (LB) and marine broth (MB), respectively, in both cases supplemented with 10 g/L maltose. Batch cultivation using LB supplemented with maltose (LB) resulted in higher cell density (OD = 6.
View Article and Find Full Text PDFThe marine environment can increase the global production of biomass. Interest in marine macroalgae and microorganisms has increased tremendously as a result of international agendas and market trends promoting sustainability as well as healthy food. Macroalgae and marine microorganisms contain unique poly- and oligosaccharides with different substitutions, e.
View Article and Find Full Text PDFBrewer's spent grain (BSG) accounts for around 85% of the solid by-products from beer production. BSG was first extracted to obtain water-soluble arabinoxylan (AX). Using subsequent alkali extraction (0.
View Article and Find Full Text PDFRhodothermus marinus, a marine aerobic thermophile, was first isolated from an intertidal hot spring in Iceland. In recent years, the R. marinus strain PRI 493 has been genetically modified, which opens up possibilities for targeted metabolic engineering of the species, such as of the carotenoid biosynthetic pathway.
View Article and Find Full Text PDF3-Hydroxypropionic acid (3-HP) is an important platform chemical for the biobased chemical industry. Lactobacillus reuteri produces 3-HP from glycerol via 3-hydroxypropionaldehyde (3-HPA) through a CoA-dependent propanediol utilization (Pdu) pathway. This study was performed to verify and evaluate the pathway comprising propionaldehyde dehydrogenase (PduP), phosphotransacylase (PduL), and propionate kinase (PduW) for formation of 3-HP from 3-HPA.
View Article and Find Full Text PDFPoly(3-hydroxypropionate), P(3HP), is a polymer combining good biodegradability with favorable material properties. In the present study, a production system for P(3HP) was designed, comprising conversion of glycerol to 3-hydroxypropionaldehyde (3HPA) as equilibrium mixture with 3HPA-hydrate and -dimer in aqueous system (reuterin) using resting cells of native Lactobacillus reuteri in a first stage followed by transformation of the 3HPA to P(3HP) using recombinant Escherichia coli strain co-expressing highly active coenzyme A-acylating propionaldehyde dehydrogenase (PduP) from L. reuteri and polyhydroxyalkanoate synthase (PhaCcs) from Chromobacterium sp.
View Article and Find Full Text PDF3-Hydroxypropionaldehyde (3HPA), a potential C3-platform chemical for a biobased industry, is produced from glycerol using Lactobacillus reuteri through its glycerol dehydratase activity. However, the process is characterized by low yield and productivity due to toxic effects of 3HPA on the biocatalyst activity. In this study, a semicarbazide-functionalized resin was prepared, evaluated for adsorption and in situ recovery of 3HPA during biotransformation of glycerol.
View Article and Find Full Text PDFProduction of propionic acid by fermentation of glycerol as a renewable resource has been suggested as a means for developing an environmentally-friendly route for this commodity chemical. However, in order to quantify the environmental benefits, life cycle assessment of the production, including raw materials, fermentation, upstream and downstream processing is required. The economic viability of the process also needs to be analysed to make sure that any environmental savings can be realised.
View Article and Find Full Text PDF3-Hydroxypropionaldehyde (3HPA) is an important C3 chemical that can be produced from renewable glycerol by resting whole cells of Lactobacillus reuteri. However the process efficiency is limited due to substrate inhibition, product-mediated loss of enzyme activity and cell viability, and also formation of by-products. Complex formation of 3HPA with sodium bisulfite and subsequent binding to Amberlite IRA-400 was investigated as a means of in situ product recovery and for overcoming inhibition.
View Article and Find Full Text PDF3-Hydroxypropionic acid (3-HP), an important C3 chemical for a bio-based industry, is natively produced by Lactobacillus reuteri from glycerol. Conversion of glycerol occurs via the intermediate 3-hydroxypropionaldehyde (3-HPA), followed by an ATP-producing pathway initiated by the CoA-acylating propionaldehyde dehydrogenase (PduP). The pduP gene of L.
View Article and Find Full Text PDF3-Hydroxypropionaldehyde (3HPA) is an important specialty chemical which can be produced from glycerol using resting cells of Lactobacillus reuteri. This biocatalytic route, however, suffers from substrate- and product-mediated loss of enzyme activity within 2 h of biotransformation. In order to overcome the inhibitory effects of 3HPA, complex formation with sodium bisulfite was investigated, optimized and applied for in situ capture of the aldehyde during biotransformation of glycerol in a fed-batch process.
View Article and Find Full Text PDF