Electrochemical synthesis of HO offers a great potential for water treatment. However, a significant challenge is the development of efficient cathode materials for the process. Herein, we implement a practical electrochemical cathode modification to support efficient HO electrogeneration via the reduction of dissolved anodic O.
View Article and Find Full Text PDFInt J Electrochem Sci
September 2018
Electro-Fenton (EF) and ultrasound radiation (US) have been of interest for the removal of chlorinated compounds from water. This study evaluates the effects of different parameters on sono-electro-Fenton (SEF) for degradation of 4-chlorophenol (4-CP) in an aqueous solution. This study uses pulsing US waves along with Pd-catalyzed EF to degrade contaminants in water while maintaining temperature.
View Article and Find Full Text PDFThis study investigates the effect of palladium (Pd) form on the electrochemical degradation of chlorobenzene in groundwater by palladium-catalyzed electro-Fenton (EF) reaction. In batch and flow-through column reactors, EF was initiated via in-situ electrochemical formation of hydrogen peroxide (HO) supported by Pd on alumina powder or by palladized polyacrylic acid (PAA) in a polyvinylidene fluoride (PVDF) membrane (Pd-PVDF/PAA). In a mixed batch reactor containing 10 mg L Fe, 2 g L of catalyst in powder form (1% Pd, 20 mg L of Pd) and an initial pH of 3, chlorobenzene was degraded under 120 mA current following a first-order decay rate showing 96% removal within 60 min.
View Article and Find Full Text PDFElectrochemical systems suffer from poor management of evolving gas bubbles. Improved understanding of bubbles behavior helps to reduce overpotential, save energy and enhance the mass transfer during chemical reactions. This work investigates and reviews the gas bubbles hydrodynamics, behavior, and management in electrochemical cells.
View Article and Find Full Text PDFIn this study, we tested the use of the bipolar electrodes to enhance electrochemical degradation of trichloroethylene (TCE) in an undivided, flow-through electrochemical reactor. The bipolar electrode forms when an electrically conductive material polarizes between feeder electrodes that are connected to a direct current source and, therefore, creates an additional anode/cathode pair in the system. We hypothesize that bipolar electrodes will generate additional oxidation/reduction zones to enhance TCE degradation.
View Article and Find Full Text PDFIn this study we investigate the influence of humic substances (HS) on electrochemical transformation of trichloroethylene (TCE) in groundwater from limestone aquifers. A laboratory flow-through column with an electrochemical reactor that consists of a palladized iron foam cathode followed by a MMO anode was used to induce TCE electro-reduction in groundwater. Up to 82.
View Article and Find Full Text PDF