Deterministic lateral displacement (DLD) microfluidic devices work based on the streamlines created by an array of micro-posts. The configuration of pillars alters the isolation efficiency of these devices. The present paper optimizes the performance of a DLD device for isolating deformable circulating tumor cells.
View Article and Find Full Text PDFMicromachines (Basel)
November 2023
The isolation of circulating tumor cells (CTCs) and their analysis are crucial for the preliminary identification of invasive cancer. One of the effective properties that can be utilized to isolate CTCs is their deformability. In this paper, inertial-based spiral microchannels with various numbers of loops are employed to sort deformable CTCs using the finite element method (FEM) and an arbitrary Lagrangian-Eulerian (ALE) approach.
View Article and Find Full Text PDF