Publications by authors named "Roya Gasimli"

Purpose: PI3K/Akt/mTOR pathway activation causes relapse and resistance after radiotherapy in breast cancer (BC). We aimed to radiosensitize BC cell lines to irradiation (IR) by PKI-402, a dual PI3K/mTOR inhibitor.

Methods: We performed cytotoxicity, clonogenicity, hanging drop, apoptosis and double-strand break detection, and phosphorylation of 16 essential proteins involved in the PI3K/mTOR pathway.

View Article and Find Full Text PDF

Ponatinib is used for advanced treatment of chronic myeloid leukemia (CML), although low doses to prevent side effects do not suppress survival pathways and eradicate leukemia stem cells (LSCs). We evaluated the potential of ponatinib and PI3K/mTOR dual-inhibitor VS-5584 combination (PoVS) therapy to increase the anti-leukemic effects of ponatinib and investigated the underlying mechanisms at the molecular level. We measured the cytotoxicities of ponatinib, VS-5584, and PoVS (CCK-8 assay), and used the median-effect equation for combination analyses.

View Article and Find Full Text PDF

Background: Dysregulation of the cell cycle is one of the main causes of melanomagenesis. Genomewide studies showed that the expression of Aurora -A and -B significantly has been upregulated in melanoma. However, there is no FDA approved drug targeting aurora kinases in the treatment of melanoma.

View Article and Find Full Text PDF

It is emphasized that cancer stem cells (CSCs) forming the subpopulation of tumour cells are responsible for tumour growth, metastasis, and cancer drug resistance. Inadequate response to conventional therapy in breast cancer leads researchers to find new treatment methods and literature surveys that support CSC studies. A selective anticancer agent BIBR1532 inhibits the telomerase enzyme.

View Article and Find Full Text PDF

The effect of Wnt pathway in head and neck cancer could not be elucidated, even though the aberrant Wnt signaling plays a key role in the development of many types of cancer. The inhibitor of β-catenin responsive transcription (ICRT-3) blocks the Wnt signaling pathway by binding to β-catenin, which is a coactivator of the Wnt signaling pathway and a promising agent for inhibiting aberrant signaling. In our study, we aimed to evaluate the effect of ICRT-3 on the cytotoxicity, apoptosis, cell cycle progression, migration, and gene expressions in head and neck cancer stem cell (HNCSC) and hypopharynx cancer.

View Article and Find Full Text PDF