Oriented cell divisions establish plant tissue and organ patterning and produce different cell types; this is particularly true of the highly organized Arabidopsis (Arabidopsis thaliana) root meristem. Mutant alleles of INFLORESCENCE AND ROOT APICES RECEPTOR KINASE (IRK) exhibit excess cell divisions in the root endodermis. IRK is a transmembrane receptor kinase that localizes to the outer polar domain of these cells, suggesting that directional signal perception is necessary to repress endodermal cell division.
View Article and Find Full Text PDFIn plants, cell polarity plays key roles in coordinating developmental processes. Despite the characterization of several polarly localized plasma membrane proteins, the mechanisms connecting protein dynamics with cellular functions often remain unclear. Here, we introduce a polarized receptor, KOIN, that restricts cell divisions in the Arabidopsis root meristem.
View Article and Find Full Text PDFMethods Mol Biol
January 2022
The development of multicellular organisms requires coordinated cell divisions for the production of diverse cell types and body plan elaboration and growth. There are two main types of cell divisions: proliferative or symmetric divisions, which produce more cells of a given type, and formative or asymmetric divisions, which produce cells of different types. Because plant cells are surrounded by cell walls, the orientation of plant cell divisions is particularly important in cell fate specification and tissue or organ morphology.
View Article and Find Full Text PDFDevelopment of multicellular organisms requires coordination of cell division and differentiation across tissues. In plants, directional signaling, and implicitly cell polarity, is proposed to participate in this coordination; however, mechanistic links between intercellular signaling, cell polarity, and cellular organization remain unclear. Here, we investigate the localization and function of INFLORESCENCE AND ROOT APICES RECEPTOR KINASE (IRK) in root development.
View Article and Find Full Text PDFCitrus tatter leaf virus (CTLV) threatens citrus production worldwide because it induces bud-union crease on the commercially important Citrange (Poncirus trifoliata × Citrus sinensis) rootstocks. However, little is known about its genomic diversity and how such diversity may influence virus detection. In this study, full-length genome sequences of 12 CTLV isolates from different geographical areas, intercepted and maintained for the past 60 years at the Citrus Clonal Protection Program (CCPP), University of California, Riverside, were characterized using next generation sequencing.
View Article and Find Full Text PDF