Publications by authors named "Roy van Heesbeen"

Introduction: During the clinical development of a vaccine, study participants are monitored for the occurrence of adverse events (AEs) over a defined period post-vaccination to assess the safety of prophylactic vaccines. Among the safety data collected, a standard practice in prophylactic vaccine clinical trials involves collecting reactogenicity data through daily AE solicitation of pre-defined sets of symptoms (i.e.

View Article and Find Full Text PDF

Background: Ad26.RSV.preF is an adenovirus serotype 26 vector-based respiratory syncytial virus (RSV) vaccine encoding a prefusion conformation-stabilized RSV fusion protein (preF) that demonstrated robust humoral and cellular immunogenicity and showed promising efficacy in a human challenge study in younger adults.

View Article and Find Full Text PDF
Article Synopsis
  • * The type of genome structure present in an organism is linked to the presence of condensin II, a protein complex involved in chromosome organization.
  • * Depleting condensin II in humans leads to a genome architecture similar to simpler organisms, suggesting a conserved mechanism from our common ancestor that impacts how genomes are structured during cell division.
View Article and Find Full Text PDF

Replication-incompetent adenoviral vectors have been under investigation as a platform to carry a variety of transgenes, and express them as a basis for vaccine development. A replication-incompetent adenoviral vector based on human adenovirus type 26 (Ad26) has been evaluated in several clinical trials. The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety and features of recombinant viral vector vaccines.

View Article and Find Full Text PDF

There has been an increase in the use of machine learning and artificial intelligence (AI) for the analysis of image-based cellular screens. The accuracy of these analyses, however, is greatly dependent on the quality of the training sets used for building the machine learning models. We propose that unsupervised exploratory methods should first be applied to the data set to gain a better insight into the quality of the data.

View Article and Find Full Text PDF

The spindle assembly checkpoint (SAC) ensures faithful segregation of chromosomes. Although most mammalian cell types depend on the SAC for viability, we found that human HAP1 cells can grow SAC independently. We generated MAD1- and MAD2-deficient cells and mutagenized them to identify synthetic lethal interactions, revealing that chromosome congression factors become essential upon SAC deficiency.

View Article and Find Full Text PDF

High-content screening (HCS) can generate large multidimensional datasets and when aligned with the appropriate data mining tools, it can yield valuable insights into the mechanism of action of bioactive molecules. However, easy-to-use data mining tools are not widely available, with the result that these datasets are frequently underutilized. Here, we present HC StratoMineR, a web-based tool for high-content data analysis.

View Article and Find Full Text PDF

Inhibition of the microtubule (MT) motor protein Eg5 results in a mitotic arrest due to the formation of monopolar spindles, making Eg5 an attractive target for anti-cancer therapies. However, Eg5-independent pathways for bipolar spindle formation exist, which might promote resistance to treatment with Eg5 inhibitors. To identify essential components for Eg5-independent bipolar spindle formation, we performed a genome-wide siRNA screen in Eg5-independent cells (EICs).

View Article and Find Full Text PDF

Bipolar spindle assembly requires force to organize the microtubule network. Here, we show that three motor proteins, namely Eg5, Kif15, and dynein, act together to produce the right force balance in the spindle. Excessive inward force results in monopolar spindle formation, while excessive outward force generation results in unstable spindles with splayed spindle poles.

View Article and Find Full Text PDF

Chromosome instability is a major hallmark of cancer, but its molecular causes are still poorly understood. A study now describes how genetic alterations frequently found in colorectal cancer increase microtubule assembly rates during mitosis and promote chromosome instability.

View Article and Find Full Text PDF

Eg5 (kinesin-5) is a highly conserved microtubule motor protein, essential for centrosome separation and bipolar spindle assembly in human cells. Using an "in vitro" evolution approach, we generated human cancer cells that can grow in the complete absence of Eg5 activity. Characterization of these Eg5-independent cells (EICs) led to the identification of a novel pathway for prophase centrosome separation, which depends on nuclear envelope (NE)-associated dynein.

View Article and Find Full Text PDF

A missense mutation in mouse Nek8, which encodes a ciliary kinase, produces the juvenile cystic kidneys (jck) model of polycystic kidney disease, but the functions of Nek8 are incompletely understood. Here, we generated a Nek8-null allele and found that homozygous mutant mice die at birth and exhibit randomization of left-right asymmetry, cardiac anomalies, and glomerular kidney cysts. The requirement for Nek8 in left-right patterning is conserved, as knockdown of the zebrafish ortholog caused randomized heart looping.

View Article and Find Full Text PDF

The microtubule motor protein kinesin-5 (Eg5) provides an outward force on centrosomes, which drives bipolar spindle assembly. Acute inhibition of Eg5 blocks centrosome separation and causes mitotic arrest in human cells, making Eg5 an attractive target for anti-cancer therapy. Using in vitro directed evolution, we show that human cells treated with Eg5 inhibitors can rapidly acquire the ability to divide in the complete absence of Eg5 activity.

View Article and Find Full Text PDF

Wnt proteins are lipid-modified glycoproteins that play a central role in development, adult tissue homeostasis and disease. Secretion of Wnt proteins is mediated by the Wnt-binding protein Wntless (Wls), which transports Wnt from the Golgi network to the cell surface for release. It has recently been shown that recycling of Wls through a retromer-dependent endosome-to-Golgi trafficking pathway is required for efficient Wnt secretion, but the mechanism of this retrograde transport pathway is poorly understood.

View Article and Find Full Text PDF