Magnetic Resonance Imaging (MRI) can provide the location and signal characteristics of pathological regions within a postmortem tissue block, thereby improving the efficiency of histopathological studies. However, such postmortem-MRI guided histopathological studies have so far only been performed on fixed samples as imaging tissue frozen at the time of extraction, while preserving its integrity, is significantly more challenging. Here we describe the development of cold-postmortem-MRI, which can preserve tissue integrity and help target techniques such as transcriptomics.
View Article and Find Full Text PDFIntroduction: Postmortem MRI provides insight into location of pathology within tissue blocks, enabling efficient targeting of histopathological studies. While postmortem imaging of fixed tissue is gaining popularity, imaging tissue frozen at the time of extraction is significantly more challenging.
Methods: Tissue integrity was examined using RNA integrity number (RIN), in mouse brains placed between -20 °C and 20 °C for up to 24 hours, to determine the highest temperature that could potentially be used for imaging without tissue degeneration.
In this article, we present crystallographic and spectroscopic evidence of a tunable system wherein a HO···π interaction switches incrementally to a nonconventional OH···π hydrogen bonding (HB) interaction. More specifically, we report the synthesis of substituted forms of model system to study the effects of aryl ring electronic density on the qualitative characteristics of OH···π hydrogen bonds therein. The OH stretch in experimental infrared data, in agreement with density-functional theory (DFT) calculations, shows continuous red-shifts as the adjacent ring becomes more electron rich.
View Article and Find Full Text PDF