Publications by authors named "Roy Patterson"

Auditory filter (AF) shape has traditionally been estimated with a combination of a notched-noise (NN) masking experiment and a power spectrum model (PSM) of masking. However, there are several challenges that remain in both the simultaneous and forward masking paradigms. We hypothesized that AF shape estimation would be improved if absolute threshold (AT) and a level-dependent internal noise were explicitly represented in the PSM.

View Article and Find Full Text PDF

We recorded neural responses in human participants to three types of pitch-evoking regular stimuli at rates below and above the lower limit of pitch using magnetoencephalography (MEG). These bandpass filtered (1-4 kHz) stimuli were harmonic complex tones (HC), click trains (CT), and regular interval noise (RIN). Trials consisted of noise-regular-noise (NRN) or regular-noise-regular (RNR) segments in which the repetition rate (or fundamental frequency F0) was either above (250 Hz) or below (20 Hz) the lower limit of pitch.

View Article and Find Full Text PDF

Pitch is an important perceptual feature; however, it is poorly understood how its cortical correlates are shaped by absolute vs relative fundamental frequency (f), and by neural adaptation. In this study, we assessed transient and sustained auditory evoked fields (AEFs) at the onset, progression, and offset of short pitch height sequences, taking into account the listener's musicality. We show that neuromagnetic activity reflects absolute f at pitch onset and offset, and relative f at transitions within pitch sequences; further, sequences with fixed f lead to larger response suppression than sequences with variable f contour, and to enhanced offset activity.

View Article and Find Full Text PDF

In recent years, electroencephalography and magnetoencephalography (MEG) have both been used to investigate the response in human auditory cortex to musical sounds that are perceived as consonant or dissonant. These studies have typically focused on the transient components of the physiological activity at sound onset, specifically, the N1 wave of the auditory evoked potential and the auditory evoked field, respectively. Unfortunately, the morphology of the N1 wave is confounded by the prominent neural response to energy onset at stimulus onset.

View Article and Find Full Text PDF

The organisation of pitch-perception mechanisms in the primate cortex is controversial, in that divergent results have been obtained, ranging from a single circumscribed 'pitch centre' to systems widely distributed across auditory cortex. Possible reasons for such discrepancies include different species, recording techniques, pitch stimuli, sampling of auditory fields, and the neural metrics recorded. In the present study, we sought to bridge some of these divisions by examining activity related to pitch in both neurons and neuronal ensembles within the auditory cortex of the rhesus macaque, a primate species with similar pitch perception and auditory cortical organisation to humans.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated neural activity related to pitch perception in patients with drug-resistant epilepsy by recording local field potentials (LFPs) from various auditory cortical regions.
  • Researchers used bursts of noise and regular interval noise (RIN) to identify responses to pitch both below and above the lower limit of pitch (LLP).
  • Findings revealed variability in high gamma responses across individuals, indicating that pitch processing is distributed within different areas of the auditory cortex, specifically in Heschl's gyrus, Planum Temporale, and lateral superior temporal gyrus.
View Article and Find Full Text PDF

Vowel recognition is largely immune to differences in speaker size despite the waveform differences associated with variation in speaker size. This has led to the suggestion that voice pitch and mean formant frequency (MFF) are extracted early in the hierarchy of hearing/speech processing and used to normalize the internal representation of vowel sounds. This paper presents a magnetoencephalographic (MEG) experiment designed to locate and compare neuromagnetic activity associated with voice pitch, MFF and vowel type in human auditory cortex.

View Article and Find Full Text PDF

This paper describes a technique for isolating the brain activity associated with melodic pitch processing. The magnetoencephalograhic (MEG) response to a four note, diatonic melody built of French horn notes, is contrasted with the response to a control sequence containing four identical, "tonic" notes. The transient response (TR) to the first note of each bar is dominated by energy-onset activity; the melody processing is observed by contrasting the TRs to the remaining melodic and tonic notes of the bar (2-4).

View Article and Find Full Text PDF

Hearing impaired (HI) people often have difficulty understanding speech in multi-speaker or noisy environments. With HI listeners, however, it is often difficult to specify which stage, or stages, of auditory processing are responsible for the deficit. There might also be cognitive problems associated with age.

View Article and Find Full Text PDF

It has been hypothesized that the steady-state response to a periodic sequence of clicks can be modeled as the superposition of responses to single clicks. Here, this hypothesis is challenged by presenting an extra click halfway between two consecutive clicks of a regular series, while measuring the auditory evoked field. After a solitary click at time zero, the click series sounded from 100 to 900 ms, with the extra click presented around 500 ms.

View Article and Find Full Text PDF

A primary objective for cognitive neuroscience is to identify how features of the sensory environment are encoded in neural activity. Current auditory models of loudness perception can be used to make detailed predictions about the neural activity of the cortex as an individual listens to speech. We used two such models (loudness-sones and loudness-phons), varying in their psychophysiological realism, to predict the instantaneous loudness contours produced by 480 isolated words.

View Article and Find Full Text PDF

Pitch is an auditory percept critical to the perception of music and speech, and for these harmonic sounds, pitch is closely related to the repetition rate of the acoustic wave. This paper reports a test of the assumption that non-human primates and especially rhesus monkeys perceive the pitch of these harmonic sounds much as humans do. A new procedure was developed to train macaques to discriminate the pitch of harmonic sounds and thereby demonstrate that the lower limit for pitch perception in macaques is close to 30 Hz, as it is in humans.

View Article and Find Full Text PDF

When a high harmonic is removed from a cosine-phase harmonic complex, we hear a sine tone pop out of the perception; the sine tone has the pitch of the high harmonic, while the tone complex has the pitch of its fundamental frequency, f0. This phenomenon is commonly referred to as Duifhuis Pitch (DP). This paper describes, for the first time, the cortical representation of DP observed with magnetoencephalography.

View Article and Find Full Text PDF

Human listeners are very sensitive to the asymmetry of time-reversed pairs of ramped and damped sounds. When the carrier is noise, the hiss -component of the perception is stronger in ramped sounds and the drumming component is stronger in damped sounds (Akeroyd and Patterson 1995). In the current study, a paired comparison technique was used to establish the relative "hissiness" of these noises, and the ratings were correlated with (a) components of the auditory evoked field (AEF) produced by these noises and (b) the magnitude of a hissiness feature derived from a model of the internal auditory images produced by these noises (Irino and Patterson 1998).

View Article and Find Full Text PDF

Lyon (J Acoust Soc Am 130:3893-3904, 2011) has described how a cascade of simple asymmetric resonators (CAR) can be used to simulate the filtering of the basilar membrane and how the gain of the resonators can be manipulated by a feedback network to simulate the fast-acting compression (FAC) characteristic of cochlear processing. When the compression is applied to complex tones, each pair of primary components produces both quadratic and cubic distortion tones (DTs), and the cascade architecture of the CAR-FAC system propagates them down to their appropriate place along the basilar membrane, where they combine additively with each other and any primary components at that frequency. This suggests that CAR-FAC systems might be used to study the role of compressive distortion in the perception of complex sounds and that behavioural measurements of cochlear distortion data might be useful when tuning the parameters of CAR-FAC systems.

View Article and Find Full Text PDF

This chapter presents a unified gammachirp framework for -estimating cochlear compression and synthesizing sounds with inverse compression that -cancels the compression of a normal-hearing (NH) listener to simulate the -experience of a hearing-impaired (HI) listener. The compressive gammachirp (cGC) filter was -fitted to notched-noise masking data to derive level-dependent -filter shapes and the cochlear compression function (e.g.

View Article and Find Full Text PDF

Objective: This study was designed to examine whether age-related differences in melodic pitch perception may be mediated by temporal processing. Temporal models of pitch suggest that performance will decline as the lowest component of a complex tone increases in frequency, regardless of age. In addition, if there are age-related deficits in temporal processing in older adults, this group may have reduced performance relative to younger adults even in the most favorable conditions.

View Article and Find Full Text PDF

At a cocktail party, listeners must attend selectively to a target speaker and segregate their speech from distracting speech sounds uttered by other speakers. To solve this task, listeners can draw on a variety of vocal, spatial, and temporal cues. Recently, Vestergaard et al.

View Article and Find Full Text PDF

Pulse-resonance sounds like vowels or instrumental tones contain acoustic information about the physical size of the sound source (pulse rate) and body resonators (resonance scale). Previous research has revealed correlates of these variables in humans using functional neuroimaging. Here, we report two experiments that use magnetoencephalography to study the neuromagnetic representations of pulse rate and resonance scale in human auditory cortex.

View Article and Find Full Text PDF

In this work, we show that electrophysiological responses during pitch perception are best explained by distributed activity in a hierarchy of cortical sources and, crucially, that the effective connectivity between these sources is modulated with pitch strength. Local field potentials were recorded in two subjects from primary auditory cortex and adjacent auditory cortical areas along the axis of Heschl's gyrus (HG) while they listened to stimuli of varying pitch strength. Dynamic causal modeling was used to compare system architectures that might explain the recorded activity.

View Article and Find Full Text PDF

Neuroimaging studies have revealed dramatic asymmetries between the responses to temporally regular and irregular sounds in the antero-lateral part of Heschl's gyrus. For example, the magnetoencephalography (MEG) study of Krumbholz et al. [Cereb.

View Article and Find Full Text PDF

Many speech sounds, such as vowels, exhibit a characteristic pattern of spectral peaks, referred to as formants, the frequency positions of which depend both on the phonological identity of the sound (e.g. vowel type) and on the vocal-tract length of the speaker.

View Article and Find Full Text PDF

Pitch is a fundamental percept with a complex relationship to the associated sound structure. Pitch perception requires brain representation of both the structure of the stimulus and the pitch that is perceived. We describe direct recordings of local field potentials from human auditory cortex made while subjects perceived the transition between noise and a noise with a regular repetitive structure in the time domain at the millisecond level called regular-interval noise (RIN).

View Article and Find Full Text PDF

Location and acoustic scale cues have both been shown to have an effect on the recognition of speech in multi-speaker environments. This study examines the interaction of these variables. Subjects were presented with concurrent triplets of syllables from a target voice and a distracting voice, and asked to recognize a specific target syllable.

View Article and Find Full Text PDF

Simple reaction times (RTs) were used to measure differences in processing time between natural animal sounds and artificial sounds. When the artificial stimuli were sequences of short tone pulses, the animal sounds were detected faster than the artificial sounds. The animal sounds were then compared with acoustically modified versions (white noise modulated by the temporal envelope of the animal sounds).

View Article and Find Full Text PDF