Hemicellulose and its derivatives have a high potential to replace fossil-based materials in various high-value-added products. Within this study, two purification cascades for the separation and valorization of hemicellulose and its derived monomeric sugars from organosolv beechwood hydrolyzates (BWHs) were experimentally demonstrated and assessed. Purification cascade 1 included hydrothermal treatment for converting remaining hemicellulose oligomers to xylose and the purification of the xylose by nanofiltration.
View Article and Find Full Text PDFProduction of caproic and caprylic acid through anaerobic fermentation of crops or residual and waste biomass has been regarded as an alternative to the conventional ways, where plant oils and animal fats are mostly used. The downstream processing of the fermentation broth is a particular challenge since the broth has a highly complex composition and low concentrations of the target products. In this study, the proof-of-principle for a separation cascade for caproic (C6) and caprylic acid (C8) produced in a maize silage-based fermentation process was demonstrated.
View Article and Find Full Text PDFBioresour Technol
September 2016
The aim of this study was to analyze four conceptual beech wood based biorefineries generated during process design in terms of environmental and economic criteria. Biorefinery 1 annually converts 400,000 dry metric tons of beech wood into the primary products 41,600t/yr polymer-grade ethylene and 58,520tDM/yr organosolv lignin and the fuels 90,800tDM/yr hydrolysis lignin and 38,400t/yr biomethane. Biorefinery 2 is extended by the product of 58,400t/yr liquid "food-grade" carbon dioxide.
View Article and Find Full Text PDFLignocellulose biorefineries are distinguished by an explicitly integrative, multi-functional concept that transforms biomass into multiple products, using a variety of conversion and separation processes. This study focuses on the technical design and economic evaluation of a lignocellulose biorefinery, that converts 400,000tDM/a (≙250MW) of beech wood into chemicals and fuel. A model was simulated with Aspen Plus® including the process steps pre-treatment, enzymatic hydrolysis, alcoholic fermentation, dehydration and biogas generation and upgrading.
View Article and Find Full Text PDF