Publications by authors named "Roy L Mauldin"

The main nucleating vapor in the atmosphere is thought to be sulfuric acid (HSO), stabilized by ammonia (NH). However, in marine and polar regions, NH is generally low, and HSO is frequently found together with iodine oxoacids [HIO, i.e.

View Article and Find Full Text PDF

External cycling regenerating nitrogen oxides (NO ≡ NO + NO) from their oxidative reservoir, NO, is proposed to reshape the temporal-spatial distribution of NO and consequently hydroxyl radical (OH), the most important oxidant in the atmosphere. Here we verify the in situ external cycling of NO in various environments with nitrous acid (HONO) as an intermediate based on synthesized field evidence collected onboard aircraft platform at daytime. External cycling helps to reconcile stubborn underestimation on observed ratios of HONO/NO and NO/NO by current chemical model schemes and rationalize atypical diurnal concentration profiles of HONO and NO lacking noontime valleys specially observed in low-NO atmospheres.

View Article and Find Full Text PDF
Article Synopsis
  • The interaction between nitrogen monoxide (NO) and organic peroxy radicals (RO) is crucial for creating highly oxygenated organic molecules (HOM), which are essential for forming secondary organic aerosols.
  • New experiments show that low levels of NO (0 - 82 pptv) can actually boost HOM production by affecting RO loss and promoting alkoxy radical formation, which continues to react and form more HOM.
  • These findings reveal that HOM yields in boreal forest emissions can range from 2.5%-6.5%, and high NO levels do not completely stop HOM formation, challenging previous beliefs about NO's role in lowering HOM yields, especially in environments with low NO.
View Article and Find Full Text PDF

Iodine is a reactive trace element in atmospheric chemistry that destroys ozone and nucleates particles. Iodine emissions have tripled since 1950 and are projected to keep increasing with rising O surface concentrations. Although iodic acid (HIO) is widespread and forms particles more efficiently than sulfuric acid, its gas-phase formation mechanism remains unresolved.

View Article and Find Full Text PDF
Article Synopsis
  • Dimethyl sulfide (DMS) contributes to climate change by affecting cloud formation through its oxidation products, primarily methanesulfonic acid (MSA) and sulfuric acid (HSO), but predicting their levels accurately is difficult.
  • Experiments conducted at CERN's CLOUD chamber showed that lowering the temperature significantly boosts the production of MSA from DMS oxidation, while HSO production remains relatively stable, resulting in a lower HSO/MSA ratio at cold temperatures.
  • The research introduces a new DMS oxidation mechanism that increases MSA production estimates, significantly higher than previous models, revealing MSA's crucial role in the sulfur cycle and its impact on cloud condensation nuclei.
View Article and Find Full Text PDF

New particle formation in the upper free troposphere is a major global source of cloud condensation nuclei (CCN). However, the precursor vapours that drive the process are not well understood. With experiments performed under upper tropospheric conditions in the CERN CLOUD chamber, we show that nitric acid, sulfuric acid and ammonia form particles synergistically, at rates that are orders of magnitude faster than those from any two of the three components.

View Article and Find Full Text PDF

Wintertime episodes of high aerosol concentrations occur frequently in urban and agricultural basins and valleys worldwide. These episodes often arise following development of persistent cold-air pools (PCAPs) that limit mixing and modify chemistry. While field campaigns targeting either basin meteorology or wintertime pollution chemistry have been conducted, coupling between interconnected chemical and meteorological processes remains an insufficiently studied research area.

View Article and Find Full Text PDF
Article Synopsis
  • - Iodic acid (HIO) can rapidly form aerosol particles in coastal areas, with nucleation rates surpassing those of sulfuric acid-ammonia under similar conditions.
  • - Ion-induced nucleation involves the initial formation of IO followed by the addition of HIO, occurring efficiently at temperatures below +10°C, while neutral nucleation relies on a different process involving iodous acid.
  • - Freshly formed HIO particles significantly contribute to fast particle growth and can effectively compete with sulfuric acid particle formation in unpolluted atmospheric regions.
View Article and Find Full Text PDF

Reactive iodine plays a key role in determining the oxidation capacity, or cleansing capacity, of the atmosphere in addition to being implicated in the formation of new particles in the marine boundary layer. The postulation that heterogeneous cycling of reactive iodine on aerosols may significantly influence the lifetime of ozone in the troposphere not only remains poorly understood but also heretofore has never been observed or quantified in the field. Here, we report direct ambient observations of hypoiodous acid (HOI) and heterogeneous recycling of interhalogen product species (i.

View Article and Find Full Text PDF

To better understand the role of aromatic hydrocarbons in new-particle formation, we measured the particle-phase abundance and volatility of oxidation products following the reaction of aromatic hydrocarbons with OH radicals. For this we used thermal desorption in an iodide-adduct Time-of-Flight Chemical-Ionization Mass Spectrometer equipped with a Filter Inlet for Gases and AEROsols (FIGAERO-ToF-CIMS). The particle-phase volatility measurements confirm that oxidation products of toluene and naphthalene can contribute to the initial growth of newly formed particles.

View Article and Find Full Text PDF
Article Synopsis
  • New-particle formation significantly contributes to urban smog, and researchers investigated how this process occurs in cities, particularly in colder temperatures.
  • Experiments at CERN's CLOUD chamber revealed that below +5°C, nitric acid and ammonia vapors can rapidly condense onto new particles, stimulating high particle growth rates, especially below -15°C when they can nucleate directly into ammonium nitrate.
  • These findings suggest that in urban environments, especially during winter, vertical mixing and high local emissions can create conditions where these particles grow quickly, enhancing their chances of survival against scavenging.
View Article and Find Full Text PDF

We use a real-time temperature-programmed desorption chemical-ionization mass spectrometer (FIGAERO-CIMS) to measure particle-phase composition and volatility of nucleated particles, studying pure α-pinene oxidation over a wide temperature range (-50 °C to +25 °C) in the CLOUD chamber at CERN. Highly oxygenated organic molecules are much more abundant in particles formed at higher temperatures, shifting the compounds toward higher O/C and lower intrinsic (300 K) volatility. We find that pure biogenic nucleation and growth depends only weakly on temperature.

View Article and Find Full Text PDF

A major fraction of atmospheric aerosol particles, which affect both air quality and climate, form from gaseous precursors in the atmosphere. Highly oxygenated organic molecules (HOMs), formed by oxidation of biogenic volatile organic compounds, are known to participate in particle formation and growth. However, it is not well understood how they interact with atmospheric pollutants, such as nitrogen oxides (NO ) and sulfur oxides (SO ) from fossil fuel combustion, as well as ammonia (NH) from livestock and fertilizers.

View Article and Find Full Text PDF

Nitrogen oxides are essential for the formation of secondary atmospheric aerosols and of atmospheric oxidants such as ozone and the hydroxyl radical, which controls the self-cleansing capacity of the atmosphere. Nitric acid, a major oxidation product of nitrogen oxides, has traditionally been considered to be a permanent sink of nitrogen oxides. However, model studies predict higher ratios of nitric acid to nitrogen oxides in the troposphere than are observed.

View Article and Find Full Text PDF

Gas-phase low volatility organic compounds (LVOC), produced from oxidation of isoprene 4-hydroxy-3-hydroperoxide (4,3-ISOPOOH) under low-NO conditions, were observed during the FIXCIT chamber study. Decreases in LVOC directly correspond to appearance and growth in secondary organic aerosol (SOA) of consistent elemental composition, indicating that LVOC condense (at OA below 1 μg m(-3)). This represents the first simultaneous measurement of condensing low volatility species from isoprene oxidation in both the gas and particle phases.

View Article and Find Full Text PDF

We use measurements made onboard the National Science Foundation's C-130 research aircraft during the 2013 Nitrogen, Oxidants, Mercury, and Aerosol Distributions, Sources, and Sinks (NOMADSS) experiment to examine total Hg (THg) emission ratios (EmRs) for six coal-fired power plants (CFPPs) in the southeastern U.S. We compare observed enhancement ratios (ERs) with EmRs calculated using Hg emissions data from two inventories: the National Emissions Inventory (NEI) and the Toxics Release Inventory (TRI).

View Article and Find Full Text PDF

Li et al. (Reports, 18 April 2014, p. 292) proposed a unity nitrous acid (HONO) yield for reaction between nitrogen dioxide and the hydroperoxyl-water complex and suggested a substantial overestimation in HONO photolysis contribution to hydroxyl radical budget.

View Article and Find Full Text PDF

H2SO4 formation from the reaction CH2OO + SO2 has been measured as a function of the water vapour concentration for close to atmospheric conditions. Second-order kinetics with regard to water indicates a preferred reaction of CH2OO with the water dimer. The obtained kinetic parameters lead to the conclusion that the atmospheric fate of CH2OO is dominated by the reaction with water vapour.

View Article and Find Full Text PDF

Atmospheric nucleation is the dominant source of aerosol particles in the global atmosphere and an important player in aerosol climatic effects. The key steps of this process occur in the sub-2-nanometer (nm) size range, in which direct size-segregated observations have not been possible until very recently. Here, we present detailed observations of atmospheric nanoparticles and clusters down to 1-nm mobility diameter.

View Article and Find Full Text PDF

Nucleation is a fundamental step in atmospheric new-particle formation. However, laboratory experiments on nucleation have systematically failed to demonstrate sulfuric acid particle formation rates as high as those necessary to account for ambient atmospheric concentrations, and the role of sulfuric acid in atmospheric nucleation has remained a mystery. Here, we report measurements of new particles (with diameters of approximately 1.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: