Disease-associated PrP fragments produced upon in vitro or in vivo proteolysis can provide significant insight into the causal strain of prion disease. Here we describe a novel molecular strain typing assay that used thermolysin digestion of caudal medulla samples to produce PrPres signatures on Western blots that readily distinguished experimental sheep bovine spongiform encephalopathy (BSE) from classical scrapie. Furthermore, the accumulation of such PrPres species within the cerebellum also appeared to be dependent upon the transmissible spongiform encephalopathy (TSE) strain, allowing discrimination between two experimental strains of scrapie and grouping of natural scrapie isolates into two profiles.
View Article and Find Full Text PDFTransmissible spongiform encephalopathies are infectious neurodegenerative diseases caused by prions, composed of ordered aggregates of misfolded cellular prion protein. Neural antigen density of prion protein, Thy-1 and glial fibrillary acidic protein was analyzed using flow cytometry of dissociated mouse brain cells after inoculation with mouse-adapted transmissible spongiform encephalopathy agents. Transmissible spongiform encephalopathy gliosis was demonstrated by increased intracellular immunoreactivity for glial fibrillary acidic protein compared with controls.
View Article and Find Full Text PDFMilk specimens were collected from lactating cows that had previously been challenged with bovine spongiform encephalopathy (BSE)-infected brain at 4-6 months of age. One group of 10 animals received a single oral dose of 100 g, a second group received 1 g and the third was made up of unexposed controls. The cows were inseminated artificially, and calved at approximately 2 years of age and annually thereafter.
View Article and Find Full Text PDFAn analytical method is described for detection of endogenous disease-associated prion protein in the buffy coat fraction from the blood of sheep infected with scrapie. The method has been improved and evaluated for its performance in the preclinical diagnosis of ovine transmissible spongiform encephalopathies. The test system uses a protocol for sample preparation that includes extraction and concentration and a test method that uses a liquid-phase competitive immunoassay for prion protein.
View Article and Find Full Text PDFA characteristic feature of prion diseases such as bovine spongiform encephalopathy (BSE) is the accumulation of a pathological isoform of the host-encoded prion protein, PrP. In contrast to its cellular isoform PrP(C), the pathological isoform PrP(Sc) forms insoluble aggregates. All commercial BSE tests currently used for routine testing are based on the proteinase K (PK) resistance of PrP, but not all pathological PrP is PK-resistant.
View Article and Find Full Text PDFScrapie and bovine spongiform encephalopathy (BSE) are major global concerns and the emergence of variant Creutzfeldt-Jakob disease (vCJD) has caused turmoil for blood transfusion services and hospitals worldwide. Recent reports of iatrogenic CJD (iCJD) cases following blood transfusions from Transmissible Spongiform Encephalopathies (TSE)-infected donors have fuelled this concern. Major diagnostic tests for BSE and scrapie are conducted post-mortem from animals in late stages of the disease.
View Article and Find Full Text PDFA novel CE-based noncompetitive immunoassay for prion protein (PrP) was established. Fluorescein isothiocyanate (FITC)-labeled protein A (FITC-PrA) was used as a fluorescent probe to tag monoclonal antibody through noncovalent binding of FITC-PrA to the Fc region of the antibody. The FITC-PrA-Ab was incubated with the analyte, prion protein, under optimized condition, forming the immunocomplex FITC-PrA-Ab-PrP.
View Article and Find Full Text PDFA method to analyze the performance of an antibody capture method using fluorescent peptides by capillary zone electrophoresis using laser-induced fluorescence (CZE-LIF) for detection has been developed. Fluorescent peptides from the prion protein were synthesized and the corresponding antibodies were produced in rabbits against these peptides. The antibodies were used to capture the fluorescent peptides.
View Article and Find Full Text PDF