Publications by authors named "Roy Harrison"

Carbonaceous aerosols (CA), composed of black carbon (BC) and organic matter (OM), significantly impact the climate. Light absorption properties of CA, particularly of BC and brown carbon (BrC), are crucial due to their contribution to global and regional warming. We present the absorption properties of BC (b) and BrC (b) inferred using Aethalometer data from 44 European sites covering different environments (traffic (TR), urban (UB), suburban (SUB), regional background (RB) and mountain (M)).

View Article and Find Full Text PDF

There is a body of evidence that ultrafine particles (UFP, those with diameters ≤ 100 nm) might have significant impacts on health. Accordingly, identifying sources of UFP is essential to develop abatement policies. This study focuses on urban Europe, and aims at identifying sources and quantifying their contributions to particle number size distribution (PNSD) using receptor modelling (Positive Matrix Factorization, PMF), and evaluating long-term trends of these source contributions using the non-parametric Theil-Sen's method.

View Article and Find Full Text PDF
Article Synopsis
  • Atmospheric new particle formation (NPF) is the natural process of creating tiny particles (sub-10 nm) from gases, observed globally in various environments.
  • Although these particles impact total and ultrafine particle concentrations, there is limited research on their health effects largely due to a lack of specific identifiers in existing data.
  • This study introduces an automated machine learning algorithm that identifies NPF events from particle data across 65 global measurement sites from 1996 to 2023, facilitating future research on NPF.
View Article and Find Full Text PDF

Studies revealed airports as a prominent source of ultrafine particles (UFP), which can disperse downwind to residential areas, raising health concerns. To expand our understanding of how air traffic-related emissions influence total particle number concentration (PNC) in the airport's surrounding areas, we conduct long-term assessment of airborne particulate exposure before and after relocation of air traffic from "Otto Lilienthal" Airport (TXL) to Berlin Brandenburg Airport "Willy Brandt" (BER) in Berlin, Germany. Here, we provide insights into the spatial-temporal variability of PNC measured in 16 schools recruited for Berlin-Brandenburg Air Study (BEAR).

View Article and Find Full Text PDF

Currently, methodologies for the identification and apportionment of air pollution sources are not widely applied due to their high cost. We present a new approach, combining mobile measurements from multiple sensors collected from the daily walks of citizen scientists, in a high population density area of Birmingham, UK. The methodology successfully pinpoints the different sources affecting the local air quality in the area using only a handful of measurements.

View Article and Find Full Text PDF

Although many studies have discussed the impact of Europe's air quality, very limited research focused on the detailed phenomenology of ambient trace elements (TEs) in PM in urban atmosphere. This study compiled long-term (2013-2022) measurements of speciation of ambient urban PM from 55 sites of 7 countries (Switzerland, Spain, France, Greece, Italy, Portugal, UK), aiming to elucidate the phenomenology of 20 TEs in PM in urban Europe. The monitoring sites comprised urban background (UB, n = 26), traffic (TR, n = 10), industrial (IN, n = 5), suburban background (SUB, n = 7), and rural background (RB, n = 7) types.

View Article and Find Full Text PDF

New particle formation (NPF) is a major source of atmospheric aerosol particles, including cloud condensation nuclei (CCN), by number globally. Previous research has highlighted that NPF is less frequent but more intense at roadsides compared to urban background. Here, we closely examine NPF at both background and roadside sites in urban Central Europe.

View Article and Find Full Text PDF

Sulfur trioxide (SO) is an important oxide of sulfur and a key intermediate in the formation of sulfuric acid (HSO, SA) in the Earth's atmosphere. This conversion to SA occurs rapidly due to the reaction of SO with a water dimer. However, gas-phase SO has been measured directly at concentrations that are comparable to that of SA under polluted mega-city conditions, indicating gaps in our current understanding of the sources and fates of SO.

View Article and Find Full Text PDF

Poor air quality is the largest environmental health risk in England. In the West Midlands, UK, ∼2.9 million people are affected by air pollution with an average loss in life expectancy of up to 6 months.

View Article and Find Full Text PDF

Ultrafine particles (UFP, those with diameters ≤ 100 nm), have been reported to potentially penetrate deeply into the respiratory system, translocate through the alveoli, and affect various organs, potentially correlating with increased mortality. The aim of this study is to assess long-term trends (5-11 years) in mostly urban UFP concentrations based on measurements of particle number size distributions (PNSD). Additionally, concentrations of other pollutants and meteorological variables were evaluated to support the interpretations.

View Article and Find Full Text PDF
Article Synopsis
  • This study focuses on how to accurately measure equivalent black carbon (eBC) concentrations using filter absorption photometers (FAPs) by understanding the mass absorption cross-section (MAC).
  • Researchers analyzed data from 22 different sites to compare various methods for calculating MAC, leading to different classifications of eBC such as LeBC, MeBC, and ReBC, with significant differences observed in measurement outcomes.
  • Results showed that MAC varies by site and season, influencing the observed trends in elemental carbon (EC), revealing a need for careful MAC consideration when interpreting eBC data to reduce uncertainty in measurements.
View Article and Find Full Text PDF

This study addressed the scarcity of NH measurements in urban Europe and the diverse monitoring protocols, hindering direct data comparison. Sixty-nine datasets from Finland, France, Italy, Spain, and the UK across various site types, including industrial (IND, 8), traffic (TR, 12), urban (UB, 22), suburban (SUB, 12), and regional background (RB, 15), are analyzed to this study. Among these, 26 sites provided 5, or more, years of data for time series analysis.

View Article and Find Full Text PDF

Aerosol ammonium (NH), mainly produced from the reactions of ammonia (NH) with acids in the atmosphere, has significant impacts on air pollution, radiative forcing, and human health. Understanding the source and formation mechanism of NH can provide scientific insights into air quality improvements. However, the sources of NH in urban areas are not well understood, and few studies focus on NH/NH at different heights within the atmospheric boundary layer, which hinders a comprehensive understanding of aerosol NH.

View Article and Find Full Text PDF

Due to the implementation of air pollution control measures in China, air quality has significantly improved, although there are still additional issues to be addressed. This study used the long-term trends of air pollutants to discuss the achievements and challenges in further improving air quality in China. The Kolmogorov-Zurbenko (KZ) filter and multiple-linear regression (MLR) were used to quantify the meteorology-related and emission-related trends of air pollutants from 2014 to 2022 in China.

View Article and Find Full Text PDF

Biomass burning is common in much of the world, and in some areas, residential wood-burning has increased. However, air pollution resulting from biomass burning is an important public health problem. A sampling campaign was carried out between May 2017 and July 2018 in over 64 sites in four sessions, to develop a spatio-temporal land use regression (LUR) model for fine particulate matter (PM) and wood-burning tracers levoglucosan and soluble potassium (K) in a city heavily impacted by wood-burning.

View Article and Find Full Text PDF

Ultrafine particles (UFPs) are respirable particles with a diameter less than 100 nm, which some studies have associated with adverse effects upon health. UFPs are currently not regulated as the health evidence is insufficient and very few observational data are available in most cities. The 2021 WHO Global Air Quality Guidelines highlighted the pressing issue of UFPs and provided a good practice statement for UFPs, which recommends that more measurement and modelling studies are implemented in future.

View Article and Find Full Text PDF

Vehicles are the third most occupied microenvironment, other than home and workplace, in developed urban areas. Vehicle cabins are confined spaces where occupants can mitigate their exposure to on-road nitrogen dioxide (NO) and fine particulate matter (PM) concentrations. Understanding which parameters exert the greatest influence on in-vehicle exposure underpins advice to drivers and vehicle occupants in general.

View Article and Find Full Text PDF

This study aims to picture the phenomenology of urban ambient total lung deposited surface area (LDSA) (including head/throat (HA), tracheobronchial (TB), and alveolar (ALV) regions) based on multiple path particle dosimetry (MPPD) model during 2017-2019 period collected from urban background (UB, n = 15), traffic (TR, n = 6), suburban background (SUB, n = 4), and regional background (RB, n = 1) monitoring sites in Europe (25) and USA (1). Briefly, the spatial-temporal distribution characteristics of the deposition of LDSA, including diel, weekly, and seasonal patterns, were analyzed. Then, the relationship between LDSA and other air quality metrics at each monitoring site was investigated.

View Article and Find Full Text PDF

This study analyzed the variability of equivalent black carbon (eBC) mass concentrations and their sources in urban Europe to provide insights into the use of eBC as an advanced air quality (AQ) parameter for AQ standards. This study compiled eBC mass concentration datasets covering the period between 2006 and 2022 from 50 measurement stations, including 23 urban background (UB), 18 traffic (TR), 7 suburban (SUB), and 2 regional background (RB) sites. The results highlighted the need for the harmonization of eBC measurements to allow for direct comparisons between eBC mass concentrations measured across urban Europe.

View Article and Find Full Text PDF

There is ample evidence from occupational studies that exposure to a mixture of Polycyclic Aromatic Hydrocarbons (PAHs) is causally associated with an increased incidence of lung cancers. In both occupational atmospheres and ambient air, PAHs are present as a mixture of many compounds, but the composition of the mixture in ambient air differs from that in the occupational atmosphere, and varies in time and space in ambient air. Estimates of cancer risk for PAH mixtures are based upon unit risks which derive from extrapolation of occupational exposure data or animal model data, and in the case of the WHO use one compound, benzo[a]pyrene as a marker for the entire mixture, irrespective of composition.

View Article and Find Full Text PDF

Aromatic volatile organic compounds (VOCs) are an important precursor of secondary organic aerosol (SOA) in the urban environment. SOA formed from the oxidation of anthropogenic VOCs can be substantially more abundant than biogenic SOA and has been shown to account for a significant fraction of fine particulate matter in urban areas. A potential aerosol mass (PAM) chamber was used to investigate the oxidised products from the photo-oxidation of m-xylene and toluene.

View Article and Find Full Text PDF

Understanding temporal and spatial trends in pregnancy and birth outcomes within an urban area is important for the monitoring of health indicators of a population. We conducted a retrospective cohort study of all births in the public hospital of Temuco, a medium-sized city in Southern Chile between 2009 and 2016 (n = 17,237). Information on adverse pregnancy and birth outcomes, as well as spatial and maternal characteristics (insurance type, employment, smoking, age, and overweight/obesity), was collected from medical charts.

View Article and Find Full Text PDF

Estimates of tyre and brake wear emission factors are presented, derived from data collected from roadside and urban background sites on the premises of the University of Birmingham, located in the UK's second largest city. Size-fractionated particulate matter samples were collected at both sites concurrently in the spring/summer of 2019 and analysed for elemental concentrations and magnetic properties. Using Positive Matrix Factorisation (PMF), three sources were identified in the roadside mass increment of the 1.

View Article and Find Full Text PDF

Air quality is one of the most important factors in public health. While outdoor air quality is widely studied, the indoor environment has been less scrutinised, even though time spent indoors is typically much greater than outdoors. The emergence of low-cost sensors can help assess indoor air quality.

View Article and Find Full Text PDF