We study the capacity fade rate of a flow battery utilizing 2,6-dihydroxyanthraquinone (DHAQ) and its dependence on hydroxide concentration, state of charge, cutoff voltages for the discharge step and for the electrochemical regeneration (oxidation of decomposition compounds back to active species) step, and the period of performing the electrochemical regeneration events. Our observations confirm that the first decomposition product, 2,6-dihydroxyanthrone (DHA), is stable, but after electro-oxidative dimerization, the anthrone dimer decomposes. We identify conditions for which there is little time after dimerization until the dimer is rapidly reoxidized electrochemically to form DHAQ.
View Article and Find Full Text PDFWe demonstrate a carbon capture system based on pH swing cycles driven through proton-coupled electron transfer of sodium (3,3'-(phenazine-2,3-diylbis(oxy))bis(propane-1-sulfonate)) (DSPZ) molecules. Electrochemical reduction of DSPZ causes an increase of hydroxide concentration, which absorbs CO; subsequent electrochemical oxidation of the reduced DSPZ consumes the hydroxide, causing CO outgassing. The measured electrical work of separating CO from a binary mixture with N, at CO inlet partial pressures ranging from 0.
View Article and Find Full Text PDFFerrocene (Fc) is one of the very limited organic catholyte options for aqueous organic flow batteries (AOFBs), a potential electrochemical energy storage solution to the intermittency of renewable electricity. Commercially available Fc derivatives are barely soluble in water, while existing methods for making water-soluble Fc derivatives by appending hydrophilic or charged moieties are tedious and time-consuming, with low yields. Here, a strategy was developed based on host-guest inclusion to acquire water-soluble Fc-based catholytes by simply mixing Fc derivatives with β-cyclodextrins (β-CDs) in water.
View Article and Find Full Text PDFThe oxide and sulfide of divalent tin show considerable promise for sustainable thin-film optoelectronics, as transparent conducting and light absorbing p-type layers, respectively. Chemical vapor deposition (CVD) and atomic layer deposition (ALD) provide attractive routes to these layers. The literature on volatile tin(II) compounds used as CVD or ALD precursors shows that new compounds can provide different growth rates, film morphologies, preferred crystallographic orientations, and other material properties.
View Article and Find Full Text PDFNanowires have promising applications as photodetectors with superior ability to tune absorption with morphology. Despite their high optical absorption, the quantum efficiencies of these nanowire photodetectors remain low due to difficulties in fabricating a shallow junction using traditional doping methods. As an alternative, we report nonconventional radial heterojunction photodiodes obtained by conformal coating of an indium oxide layer on silicon nanowire arrays.
View Article and Find Full Text PDFMany microelectronic devices require thin films of silver or gold as wiring layers. We report silver(i) and gold(i) bicyclic amidinate complexes, wherein the constrained ligand geometry lessens the propensity for thermal decomposition. These new volatile compounds provide metallic films of silver and gold during CVD with hydrogen below 230 °C.
View Article and Find Full Text PDFRedox flow batteries based on quinone-bearing aqueous electrolytes have emerged as promising systems for energy storage from intermittent renewable sources. The lifetime of these batteries is limited by quinone stability. Here, we confirm that 2,6-dihydroxyanthrahydroquinone tends to form an anthrone intermediate that is vulnerable to subsequent irreversible dimerization.
View Article and Find Full Text PDFIndium oxide is a major component of many technologically important thin films, most notably the transparent conductor indium tin oxide (ITO). Despite being pyrophoric, homoleptic indium(III) alkyls do not allow atomic layer deposition (ALD) of In O using water as a co-precursor at substrate temperatures below 200 °C. Several alternative indium sources have been developed, but none allows ALD at lower temperatures except in the presence of oxidants such as O or O , which are not compatible with some substrates or alloying processes.
View Article and Find Full Text PDFQuinone-based aqueous flow batteries provide a potential opportunity for large-scale, low-cost energy storage due to their composition from earth abundant elements, high aqueous solubility, reversible redox kinetics and their chemical tunability such as reduction potential. In an operating flow battery utilizing 9,10-anthraquinone-2,7-disulfonic acid, the aggregation of an oxidized quinone and a reduced hydroquinone to form a quinhydrone dimer causes significant variations from ideal solution behavior and of optical absorption from the Beer-Lambert law. We utilize in situ UV-Vis spectrophotometry to establish (a), quinone, hydroquinone and quinhydrone molar attenuation profiles and (b), an equilibrium constant for formation of the quinhydrone dimer (K) ∼ 80 M.
View Article and Find Full Text PDFStructure and composition control the behavior of materials. Isostructural alloying is historically an extremely successful approach for tuning materials properties, but it is often limited by binodal and spinodal decomposition, which correspond to the thermodynamic solubility limit and the stability against composition fluctuations, respectively. We show that heterostructural alloys can exhibit a markedly increased range of metastable alloy compositions between the binodal and spinodal lines, thereby opening up a vast phase space for novel homogeneous single-phase alloys.
View Article and Find Full Text PDFIn advanced microelectronics, precise design of liner and capping layers become critical, especially when it comes to the fabrication of Cu interconnects with dimensions lower than its mean free path. Herein, we demonstrate that direct-liquid-evaporation chemical vapor deposition (DLE-CVD) of Co is a promising method to make liner and capping layers for nanoscale Cu interconnects. DLE-CVD makes pure, smooth, nanocrystalline, and highly conformal Co films with highly controllable growth characteristics.
View Article and Find Full Text PDFWe demonstrate for the first time that a single-crystalline epitaxial MgCaO film can be deposited on gallium nitride (GaN) by atomic layer deposition (ALD). By adjusting the ratio between the amounts of Mg and Ca in the film, a lattice matched MgCaO/GaN(0001) interface can be achieved with low interfacial defect density. High-resolution X-ray diffraction (XRD) shows that the lattice parameter of this ternary oxide nearly obeys Vegard's law.
View Article and Find Full Text PDFAs novel absorber materials are developed and screened for their photovoltaic (PV) properties, the challenge remains to reproducibly test promising candidates for high-performing PV devices. Many early-stage devices are prone to device shunting due to pinholes in the absorber layer, producing "false-negative" results. Here, we demonstrate a device engineering solution toward a robust device architecture, using a two-step absorber deposition approach.
View Article and Find Full Text PDFWe have prepared two new Ca(II) amidinates, which comprise a new class of ALD precursors. The syntheses proceed by a direct reaction between Ca metal and the amidine ligands in the presence of ammonia. Bis(N,N'-diisopropylformamidinato)calcium(II) (1) and bis(N,N'-diisopropylacetamidinato)calcium(II) (2) adopt dimeric structures in solution and in the solid state.
View Article and Find Full Text PDFStorage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments.
View Article and Find Full Text PDFTin sulfide (SnS), as a promising absorber material in thin-film photovoltaic devices, is described. Here, it is confirmed that SnS evaporates congruently, which provides facile composition control akin to cadmium telluride. A SnS heterojunction solar cell is demons trated, which has a power conversion efficiency of 3.
View Article and Find Full Text PDFThe power conversion efficiency of solar cells based on copper (I) oxide (Cu2 O) is enhanced by atomic layer deposition of a thin gallium oxide (Ga2 O3 ) layer. By improving band-alignment and passivating interface defects, the device exhibits an open-circuit voltage of 1.20 V and an efficiency of 3.
View Article and Find Full Text PDFRecently, 2-dimensional electron gas (2-DEG) was discovered at the interface of Al₂O₃/SrTiO₃ (STO) heterostructures, in which the amorphous Al₂O₃ layers were grown by atomic layer deposition (ALD). The saturated electron density at the Al₂O₃/STO heterostructures above the critical thickness of Al₂O₃ is explained by an oxygen diffusion mechanism.
View Article and Find Full Text PDFGaAs metal-oxide-semiconductor devices historically suffer from Fermi-level pinning, which is mainly due to the high trap density of states at the oxide/GaAs interface. In this work, we present a new way of passivating the interface trap states by growing an epitaxial layer of high-k dielectric oxide, La(2-x)Y(x)O(3), on GaAs(111)A. High-quality epitaxial La(2-x)Y(x)O(3) thin films are achieved by an ex situ atomic layer deposition (ALD) process, and GaAs MOS capacitors made from this epitaxial structure show very good interface quality with small frequency dispersion and low interface trap densities (D(it)).
View Article and Find Full Text PDFThe formation of a two-dimensional electron gas (2-DEG) using SrTiO(3) (STO)-based heterostructures provides promising opportunities in oxide electronics. We realized the formation of 2-DEG using several amorphous layers grown by the atomic layer deposition (ALD) technique at 300 °C which is a process compatible with mass production and thereby can provide the realization of potential applications. We found that the amorphous LaAlO(3) (LAO) layer grown by the ALD process can generate 2-DEG (∼1 × 10(13)/cm(2)) with an electron mobility of 4-5 cm(2)/V·s.
View Article and Find Full Text PDFA major loss mechanism in dye-sensitized solar cells (DSCs) is recombination at the TiO(2)/electrolyte interface. Here we report a method to reduce greatly this loss mechanism. We deposit insulating and transparent silica (SiO(2)) onto the open areas of a nanoparticulate TiO(2) surface while avoiding any deposition of SiO(2) over or under the organic dye molecules.
View Article and Find Full Text PDFThe initial surface chemistry and growth mechanisms of the atomic layer deposition (ALD) of metallic copper on SiO(2) surfaces are investigated using an amidinate precursor (copper(I) di-sec-butylacetamidinate, [Cu((s)Bu-amd)](2)) and molecular hydrogen. Using in situ Fourier transform infrared spectroscopy together with calculations based on density functional theory, we show that the initial surface reaction of [Cu((s)Bu-amd)](2) with hydroxylated SiO(2) takes place by displacement of one of the sec-butylacetamidinate ligands at a surface -OH site, thus forming a Si-O-Cu-((s)Bu-amd) surface species, evident by the stretching vibrations of Si-O-Cu and the chelating -NCN- bonds. Molecular hydrogen exposure during a subsequent pulse dissociates most of the sec-butylacetamidinate ligands bound to surface Cu, which releases free amidine vapor, leaving Cu atoms free to agglomerate on the surface and thus opening more reactive sites for the next [Cu((s)Bu-amd)](2) pulse.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.