Antimicrobial resistance is considered a global One Health threat. Controlling selection pressure by reducing antibiotic use in livestock is a significant component of the response to this threat. The science concerning use and resistance is complicated and affected by time from antibiotic exposure, changing bacterial fitness, and varies by drug and pathogen.
View Article and Find Full Text PDFThe objective of this study was to analyze the effects of immunological suppression of ovarian function and estrus (Improvest®; Zoetis Inc.) on carcass cutting yields and meat quality. A total of 1,080 gilts were allocated by weight and assigned to pens of 27 pigs/pen.
View Article and Find Full Text PDFPorcine reproductive and respiratory syndrome virus (PRRSV) is a globally significant pathogen of pigs. Preventing the entry of PRRSV into swine breeding herds enhances animal health and welfare. A recently published retrospective cohort study reported significant differences in PRRSV incidence risk between breeding herds that practiced Next Generation Biosecurity (NGB) COMPLETE, versus herds that practiced a partial approach (NGB INCOMPLETE) over a 2-year period.
View Article and Find Full Text PDFA longitudinal study was conducted to assess the impact of different antimicrobial exposures of nursery-phase pigs on patterns of phenotypic antimicrobial resistance (AMR) in fecal indicator organisms throughout the growing phase. Based on practical approaches used to treat moderate to severe porcine reproductive and respiratory syndrome virus (PRRSV)-associated secondary bacterial infections, two antimicrobial protocols of differing intensities of exposure [44.1 and 181.
View Article and Find Full Text PDFThe hypothesis that feed ingredients could serve as vehicles for the transport and transmission of viral pathogens was first validated under laboratory conditions. To bridge the gap from the laboratory to the field, this current project tested whether three significant viruses of swine could survive in feed ingredients during long-distance commercial transport across the continental US. One-metric tonne totes of soybean meal (organic and conventional) and complete feed were spiked with a 10 ml mixture of PRRSV 174, PEDV and SVA and transported for 23 days in a commercial semi-trailer truck, crossing 29 states, and 10,183 km.
View Article and Find Full Text PDFThe role of animal feed as a vehicle for the transport and transmission of viral diseases was first identified during the porcine epidemic diarrhoea virus (PEDV) epidemic in North America. Since that time, various feed additives have been evaluated at the laboratory level to measure their effect on viral viability and infectivity in contaminated feed using bioassay piglet models. While a valid first step, the conditions of these studies were not representative of commercial swine production.
View Article and Find Full Text PDFIn 2014, the hypothesis that feed ingredients could serve as vehicles for the transport and transmission of viral pathogens was proposed and evaluated by multiple investigators under laboratory conditions. In an attempt to validate these data, we used a demonstration project to test whether three significant viruses of swine could survive in feed ingredients under real-world shipping conditions. Samples of soya bean meal (organic and conventional), lysine, choline and vitamin A were spiked with a mixture of PRRSV 174, PEDV and SVA and transported for 21 days in the trailer of a commercial transport vehicle, encompassing 14 states and 9,741 km.
View Article and Find Full Text PDF