Front Neuroinform
August 2024
While standard polysomnography has revealed the importance of the sleeping brain in health and disease, more specific insight into the relevant brain circuits requires high-density electroencephalography (EEG). However, identifying and handling sleep EEG artifacts becomes increasingly challenging with higher channel counts and/or volume of recordings. Whereas manual cleaning is time-consuming, subjective, and often yields data loss (e.
View Article and Find Full Text PDFThe nature and degree of objective sleep impairments in insomnia disorder remain unclear. This issue is complicated further by potential changes in sleep architecture on the first compared with subsequent nights in the laboratory. Evidence regarding differential first-night effects in people with insomnia disorder and controls is mixed.
View Article and Find Full Text PDFSleep supports memory consolidation. However, it is not completely clear how different sleep stages contribute to this process. While rapid eye movement sleep (REM) has traditionally been implicated in the processing of emotionally charged material, recent studies indicate a role for slow wave sleep (SWS) in strengthening emotional memories.
View Article and Find Full Text PDFIn the past decades, actigraphy has emerged as a promising, cost-effective, and easy-to-use tool for ambulatory sleep recording. Polysomnography (PSG) validation studies showed that actigraphic sleep estimates fare relatively well in healthy sleepers. Additionally, round-the-clock actigraphy recording has been used to study circadian rhythms in various populations.
View Article and Find Full Text PDFStudy Objectives: Converging evidence from neuroimaging, sleep, and genetic studies suggest that dysregulation of thalamocortical interactions mediated by the thalamic reticular nucleus (TRN) contribute to autism spectrum disorder (ASD). Sleep spindles assay TRN function, and their coordination with cortical slow oscillations (SOs) indexes thalamocortical communication. These oscillations mediate memory consolidation during sleep.
View Article and Find Full Text PDFExtracting shared structure across our experiences allows us to generalize our knowledge to novel contexts. How do different brain states influence this ability to generalize? Using a novel category learning paradigm, we assess the effect of both sleep and time of day on generalization that depends on the flexible integration of recent information. Counter to our expectations, we found no evidence that this form of generalization is better after a night of sleep relative to a day awake.
View Article and Find Full Text PDFCooperative interactions between the amygdala and hippocampus are widely regarded as critical for overnight emotional processing of waking experiences, but direct support from the human brain for such a dialog is absent. Using overnight intracranial recordings in 4 presurgical epilepsy patients (3 female), we discovered ripples within human amygdala during nonrapid eye movement (NREM) sleep, a brain state known to contribute to affective processing. Like hippocampal ripples, amygdala ripples are associated with sharp waves, linked to sleep spindles, and tend to co-occur with their hippocampal counterparts.
View Article and Find Full Text PDFSleep spindles, defining oscillations of stage 2 non-rapid eye movement sleep (N2), mediate memory consolidation. Schizophrenia is characterized by reduced spindle activity that correlates with impaired sleep-dependent memory consolidation. In a small, randomized, placebo-controlled pilot study of schizophrenia, eszopiclone (Lunesta®), a nonbenzodiazepine sedative hypnotic, increased N2 spindle density (number/minute) but did not significantly improve memory.
View Article and Find Full Text PDFSleep Med Rev
December 2020
Recent years have witnessed a surge in human sleep electroencephalography (EEG) studies, employing increasingly sophisticated analysis strategies to relate electrophysiological activity to cognition and disease. However, properly calculating and interpreting metrics used in contemporary sleep EEG requires attention to numerous theoretical and practical signal-processing details that are not always obvious. Moreover, the vast number of outcome measures that can be derived from a single dataset inflates the risk of false positives and threatens replicability.
View Article and Find Full Text PDFDuring sleep, new memories undergo a gradual transfer from hippocampal (HPC) to neocortical (NC) sites. Precisely timed neural oscillations are thought to mediate this sleep-dependent memory consolidation, but exactly how sleep oscillations instantiate the HPC-NC dialog remains elusive. Employing overnight invasive electroencephalography in ten neurosurgical patients, we identified three broad classes of phase-based communication between HPC and lateral temporal NC.
View Article and Find Full Text PDFCross-frequency phase-phase coupling (PPC) has been suggested to play a role in cognitive processing and, in particular, in memory consolidation during sleep. Controversial results have been reported regarding the existence of spontaneous phase-phase coupling in the hippocampus. Here, we investigated this phenomenon in intracranial EEG recordings from the human hippocampus acquired during waking state and different sleep stages.
View Article and Find Full Text PDFCross-frequency coupling of sleep oscillations is thought to mediate memory consolidation. While the hippocampus is deemed central to this process, detailed knowledge of which oscillatory rhythms interact in the sleeping human hippocampus is lacking. Combining intracranial hippocampal and non-invasive electroencephalography from twelve neurosurgical patients, we characterized spectral power and coupling during non-rapid eye movement (NREM) and rapid eye movement (REM) sleep.
View Article and Find Full Text PDFObjectives: Our objective was to determine if feline-specific music played in a veterinary clinical setting would promote lower cat stress scores (CSSs), lower mean handling scale scores (HSs) and reduced neutrophil:lymphocyte ratios (NLRs) in cats during physical examinations.
Methods: Cats were exposed to one of three auditory stimuli tests - silence, classical music and cat-specific music - during three physical examinations 2 weeks apart. CSSs were recorded at pre- and post-auditory tests and during the examination period.
Sleep and emotion are both powerful modulators of the long-term stability of episodic memories, but precisely how these factors interact remains unresolved. We assessed changes in item recognition, contextual memory, and affective tone for negative and neutral memories across a 12 h interval containing sleep or wakefulness in 71 human volunteers. Our data indicate a sleep-dependent stabilization of negative contextual memories, in a way not seen for neutral memories, item recognition, or across wakefulness.
View Article and Find Full Text PDFIndividual differences in brain organization exist at many spatiotemporal scales and underlie the diversity of human thought and behavior. Oscillatory neural activity is crucial for these processes, but how such rhythms are expressed across the cortex within and across individuals is poorly understood. We conducted a systematic characterization of brain-wide activity across frequency bands and oscillatory features during rest and task execution.
View Article and Find Full Text PDFSlow oscillations and sleep spindles, the canonical electrophysiological oscillations of nonrapid eye movement sleep, are thought to gate incoming sensory information, underlie processes of sleep-dependent memory consolidation, and are altered in various neuropsychiatric disorders. Accumulating evidence of the predominantly local expression of these individual oscillatory rhythms suggests that their cross-frequency interactions may have a similar local component. However, it is unclear whether locally coordinated sleep oscillations exist across the cortex, and whether and how these dynamics differ between fast and slow spindles, and sleep stages.
View Article and Find Full Text PDFFront Hum Neurosci
September 2017
Sleep spindles are transient oscillatory waveforms that occur during non-rapid eye movement (NREM) sleep across widespread cortical areas. In humans, spindles can be classified as either slow or fast, but large individual differences in spindle frequency as well as methodological difficulties have hindered progress towards understanding their function. Using two nights of high-density electroencephalography recordings from 28 healthy individuals, we first characterize the individual variability of NREM spectra and demonstrate the difficulty of determining subject-specific spindle frequencies.
View Article and Find Full Text PDFStudy Objectives: Schizophrenia patients have correlated deficits in sleep spindle density and sleep-dependent memory consolidation. In addition to spindle density, memory consolidation is thought to rely on the precise temporal coordination of spindles with slow waves (SWs). We investigated whether this coordination is intact in schizophrenia and its relation to motor procedural memory consolidation.
View Article and Find Full Text PDFJ Neurosci Methods
October 2015
Background: Cross-frequency coupling methods allow for the identification of non-linear interactions across frequency bands, which are thought to reflect a fundamental principle of how electrophysiological brain activity is temporally orchestrated. In this paper we uncover a heretofore unknown source of bias in a commonly used method that quantifies cross-frequency coupling (phase-amplitude-coupling, or PAC).
New Method: We demonstrate that non-uniform phase angle distributions--a phenomenon that can readily occur in real data--can under some circumstances produce statistical errors and uninterpretable results when using PAC.
Large-amplitude sleep slow oscillations group faster neuronal oscillations and are of functional relevance for memory performance. However, relatively little is known about the impact of slow oscillations on functionally coupled networks. Here, we provide a comprehensive view on how human slow oscillatory dynamics influence various measures of brain processing.
View Article and Find Full Text PDFThe sleeping brain retains some residual information processing capacity. Although direct evidence is scarce, a substantial literature suggests the phase of slow oscillations during deep sleep to be an important determinant for stimulus processing. Here, we introduce an algorithm for predicting slow oscillations in real-time.
View Article and Find Full Text PDFSleep spindles have been connected to memory processes in various ways. In addition, spindles appear to be modulated at the local cortical network level. We investigated whether cueing specific memories during sleep leads to localized spindle modulations in humans.
View Article and Find Full Text PDFContextual cues are known to benefit memory retrieval, but whether and how sleep affects this context effect remains unresolved. We manipulated contextual congruence during memory retrieval in human volunteers across 12 h and 24 h intervals beginning with either sleep or wakefulness. Our data suggest that whereas contextual cues lose their potency with time, sleep does not modulate this process.
View Article and Find Full Text PDFBoth sleep spindles and slow oscillations have been implicated in sleep-dependent memory consolidation. Whereas spindles occur during both light and deep sleep, slow oscillations are restricted to deep sleep, raising the possibility of greater consolidation-related spindle involvement during deep sleep. We assessed declarative memory retention over an interval containing a nap and determined spindle density for light and deep sleep separately.
View Article and Find Full Text PDF