Publications by authors named "Roy A Lynch"

Regulating the balance between synthesis and proteasomal degradation of cellular proteins is essential for tissue growth and maintenance, but the critical pathways regulating protein ubiquitination and degradation are incompletely defined. Although participation of calpain calcium-activated proteases in post-necrotic myocardial autolysis is well characterized, their importance in homeostatic turnover of normal cardiac tissue is controversial. Hence, we evaluated the consequences of physiologic calpain (calcium-activated protease) activity in cultured cardiomyocytes and unstressed mouse hearts.

View Article and Find Full Text PDF

The high mobility group A2 protein (HMGA2) has been implicated in the pathogenesis of mesenchymal tumors such as leiomyoma, lipoma and hamartoma. HMGA2 was pinpointed by mapping the breakpoints in the chromosomal translocations in 12q15, especially the t(12;14) that is commonly seen in uterine leiomyoma. It is generally assumed that altered expression of HMGA2 is an early event in the pathway to tumor formation.

View Article and Find Full Text PDF
Article Synopsis
  • Sarcoplasmic reticulum Ca(2+)-cycling proteins are crucial for heart muscle contraction, and their dysfunction is linked to genetic heart diseases, like familial cardiomyopathies.
  • Research identified a specific genetic mutation (PLN-R14Del) in the phospholamban gene in a family with inherited heart failure, causing issues like left ventricular dilation and arrhythmias in affected individuals.
  • Transgenic mouse models with the PLN-R14Del mutation displayed similar heart disease symptoms, highlighting that this mutation leads to severe suppression of heart muscle function, contributing to early heart failure in both mice and humans.
View Article and Find Full Text PDF

Caspase-1/interleukin-converting enzyme (ICE) is a cysteine protease traditionally considered to have importance as an inflammatory mediator, but not as an apoptotic effector. Because of the dual functions of this caspase, the pathophysiological impact of its reported upregulation in hypertrophy and heart failure is not known. Here, the consequences of increased myocardial expression of procaspase-1 were examined on the normal and ischemically injured heart.

View Article and Find Full Text PDF

Hundreds of signaling molecules have been assigned critical roles in the pathogenesis of myocardial hypertrophy and heart failure based on cardiac phenotypes from alpha-myosin heavy chain-directed overexpression mice. Because permanent ventricular transgene expression in this system begins during a period of rapid physiological neonatal growth, resulting phenotypes are the combined consequences of transgene effects and normal trophic influences. We used temporally-defined forced gene expression to investigate synergy between postnatal physiological cardiac growth and two functionally divergent cardiomyopathic genes.

View Article and Find Full Text PDF

Catecholaminergic activation of myocardial beta-adrenergic receptors (betaAR) is the principle mechanism regulating cardiac function. Agonists desensitize betaAR through G protein-coupled receptor kinase-mediated uncoupling and beta-arrestin-mediated internalization. Although inhibition of myocardial G protein-coupled receptor kinase-2 enhances cardiac function and reverses heart failure, pathophysiological effects of modulated betaAR internalization/recycling are unknown.

View Article and Find Full Text PDF

A series of 88 conventional follicular and Hürthle cell thyroid tumors were analyzed for RAS mutations and PAX8-PPAR gamma rearrangements using molecular methods and for galectin-3 and HBME-1 expression by immunohistochemistry. A novel LightCycler technology-based method was developed to detect point mutations in codons 12/13 and 61 of the H-RAS, K-RAS, and N-RAS genes. Forty-nine percent of conventional follicular carcinomas had RAS mutations, 36% had PAX8-PPAR gamma rearrangement, and only one (3%) had both.

View Article and Find Full Text PDF
Article Synopsis
  • Depressed calcium handling in failing heart cells is linked to poor function of the sarcoplasmic reticulum (SR), especially in cardiomyocytes affected by mutations in the phospholamban (PLN) gene.
  • A specific T116G mutation in the PLN gene was found in families with hereditary heart failure, showing varying effects based on whether individuals were heterozygous or homozygous.
  • Homozygous individuals faced severe outcomes, including dilated cardiomyopathy and requiring heart transplants by young adulthood, highlighting that PLN loss-of-function mutations have harmful effects in humans, unlike the beneficial effects observed in mice.
View Article and Find Full Text PDF

The frequency of single nucleotide polymorphisms (SNPs) in downstream signaling proteins was determined by combination heteroduplex HPLC and double-stranded sequencing of genomic DNA from 96-144 congestive heart failure (CHF) patients. Analysis of 56 coding exons in 9 signaling genes revealed 17 novel and 8 previously reported synonymous (no change in amino acid) SNPs, as well as one novel nonsynonymous SNP in the Rad small G protein. Because this initial analysis failed to detect numerous SNPs reported in the NCBI and Celera databases, double-strand sequencing of relevant exons from 74-91 CHF patients was used to confirm the absence of 10 previously reported nonsynonymous SNPs.

View Article and Find Full Text PDF

Loss of cardiomyocytes through programmed cell death is a key event in the development of heart failure, but the inciting molecular mechanisms are largely unknown. We used microarray analysis to identify a genetic program for myocardial apoptosis in Gq-mediated and pressure-overload cardiac hypertrophy. A critical component of this apoptotic program was Nix/Bnip3L.

View Article and Find Full Text PDF