Brain interfaces that can stimulate neurons, cause minimal damage, and work for a long time will be central for future neuroprosthetics. Here, the long-term performance of highly flexible, thin polyimide shanks with several small (<15 µm) electrodes during electrical microstimulation of the visual cortex, is reported. The electrodes exhibit a remarkable stability when several billions of electrical pulses are applied in vitro.
View Article and Find Full Text PDF. Electrical stimulation of visual cortex via a neuroprosthesis induces the perception of dots of light ('phosphenes'), potentially allowing recognition of simple shapes even after decades of blindness. However, restoration of functional vision requires large numbers of electrodes, and chronic, clinical implantation of intracortical electrodes in the visual cortex has only been achieved using devices of up to 96 channels.
View Article and Find Full Text PDFThe mouse is a useful and popular model for studying of visual cortical function. To facilitate the translation of results from mice to primates, it is important to establish the extent of cortical organization equivalence between species and to identify possible differences. We focused on the different types of interneurons as defined by calcium-binding protein (CBP) expression in the layers of primary visual cortex (V1) in mouse and rhesus macaque.
View Article and Find Full Text PDFFragments of mature tRNAs have long been considered as mere degradation products without physiological function. However, recent reports show that tRNA-derived small RNAs (tsRNAs) play prominent roles in diverse cellular processes across a wide spectrum of species. Contrasting the situation in other small RNA pathways the mechanisms behind these effects appear more diverse, more complex, and are generally less well understood.
View Article and Find Full Text PDFGlutamate receptors mediate excitatory neurotransmission. A very prevalent type of glutamate receptor in the neocortex is the AMPA receptor (AMPAR). AMPARs mediate fast synaptic transmission and their functionality depends on the subunit composition.
View Article and Find Full Text PDFNeurons in the primary visual cortex (V1) receive feedforward input from the thalamus, which shapes receptive-field properties. They additionally receive recurrent inputs via horizontal connections within V1 and feedback from higher visual areas that are thought to be important for conscious visual perception. Here, we investigated what roles different glutamate receptors play in conveying feedforward and recurrent inputs in macaque V1.
View Article and Find Full Text PDF