Publications by authors named "Roxana Ioana Brazdis"

Analgesics and nonsteroidal anti-inflammatory drugs (NSAIDs) such as paracetamol, diclofenac, and ibuprofen are frequently encountered in surface and ground water, thereby posing a significant risk to aquatic ecosystems. Our study reports the catalytic performances of nanosystems TiO-MeO (Me = Ce, Sn) prepared by the sol-gel method and deposited onto glass slides by a dip-coating approach in the removal of paracetamol from aqueous solutions by catalytic ozonation. The effect of catalyst type and operation parameters on oxidation efficiency was assessed.

View Article and Find Full Text PDF

Wastewater treatment remains a critical issue globally, despite various technological advancements and breakthroughs. The study of different materials and technologies gained new valences in the last years, in order to obtain cheap and efficient processes, to obtain a cleaner environment for future generations. In this context, the present review paper presents the new achievements in the materials domain with highlights on apatitic materials used for decontamination of water loaded with heavy metals.

View Article and Find Full Text PDF

Currently, hydroxyapatite is probably the most researched material, due to its multiple applications in medical, environmental, or cultural heritage, when the classical structure is modified and calcium is displaced partially or totally with different metals. By changing the classical structure of the hydroxyapatite, new morphologies can be obtained, thus allowing final applications different from those of the initial hydroxyapatite material. However, their properties should be tuned for the desired application.

View Article and Find Full Text PDF

Phytosynthesized nanoparticles represent a continuously increasing field of research, with numerous studies published each year. However, with the emerging interest in this area, the quality of the published works is also continuously increasing, switching from routine antioxidant or antimicrobial studies on trivial microbial lines to antibiotic-resistant strains or antitumoral studies. However, this increasing interest has not been not reflected in the studies regarding the toxicological effects of nanoparticles (NPs); this should be a subject of greatest interest, as the increasing administration of NPs in general (and phytosynthesized NPs in particular) could lead to their accumulation in the environment (soil, water and living organisms).

View Article and Find Full Text PDF