Publications by authors named "Roxana E Georgescu"

During DNA replication, the proliferating cell nuclear antigen (PCNA) clamps are loaded onto primed sites for each Okazaki fragment synthesis by the AAA heteropentamer replication factor C (RFC). PCNA encircling duplex DNA is quite stable and is removed from DNA by the dedicated clamp unloader Elg1-RFC. Here, we show the cryo-EM structure of Elg1-RFC in various states with PCNA.

View Article and Find Full Text PDF

DNA replication in all cells begins with the melting of base pairs at the duplex origin to allow access to single-stranded DNA templates which are replicated by DNA polymerases. In bacteria, origin DNA is presumed to be melted by accessory proteins that allow loading of two ring-shaped replicative helicases around single-strand DNA (ssDNA) for bidirectional unwinding and DNA replication. In eukaryotes, by contrast, two replicative CMG (Cdc45-Mcm2-7-GINS) helicases are initially loaded head to head around origin double-strand DNA (dsDNA), and there does not appear to be a separate origin unwinding factor.

View Article and Find Full Text PDF

Rad24-RFC (replication factor C) loads the 9-1-1 checkpoint clamp onto the recessed 5' ends by binding a 5' DNA at an external surface site and threading the 3' single-stranded DNA (ssDNA) into 9-1-1. We find here that Rad24-RFC loads 9-1-1 onto DNA gaps in preference to a recessed 5' end, thus presumably leaving 9-1-1 on duplex 3' ss/double-stranded DNA (dsDNA) after Rad24-RFC ejects from DNA. We captured five Rad24-RFC-9-1-1 loading intermediates using a 10-nt gap DNA.

View Article and Find Full Text PDF

Recent structural studies show the Rad24-RFC loads the 9-1-1 checkpoint clamp onto a recessed 5' end by binding the 5' DNA on Rad24 at an external surface site and threading the 3' ssDNA into the well-established internal chamber and into 9-1-1. We find here that Rad24-RFC loads 9-1-1 onto DNA gaps in preference to a recessed 5' DNA end, thus presumably leaving 9-1-1 on a 3' ss/ds DNA after Rad24-RFC ejects from the 5' gap end and may explain reports of 9-1-1 directly functioning in DNA repair with various TLS polymerases, in addition to signaling the ATR kinase. To gain a deeper understanding of 9-1-1 loading at gaps we report high-resolution structures of Rad24-RFC during loading of 9-1-1 onto 10-nt and 5-nt gapped DNAs.

View Article and Find Full Text PDF

The 9-1-1 DNA checkpoint clamp is loaded onto 5'-recessed DNA to activate the DNA damage checkpoint that arrests the cell cycle. The 9-1-1 clamp is a heterotrimeric ring that is loaded in Saccharomyces cerevisiae by Rad24-RFC (hRAD17-RFC), an alternate clamp loader in which Rad24 replaces Rfc1 in the RFC1-5 clamp loader of proliferating cell nuclear antigen (PCNA). The 9-1-1 clamp loading mechanism has been a mystery, because, unlike RFC, which loads PCNA onto a 3'-recessed junction, Rad24-RFC loads the 9-1-1 ring onto a 5'-recessed DNA junction.

View Article and Find Full Text PDF

The DNA polymerase (Pol) δ of (S.c.) is composed of the catalytic subunit Pol3 along with two regulatory subunits, Pol31 and Pol32.

View Article and Find Full Text PDF

Replicative helicases in all cell types are hexameric rings that unwind DNA by steric exclusion in which the helicase encircles the tracking strand only and excludes the other strand from the ring. This mode of translocation allows helicases to bypass blocks on the strand that is excluded from the central channel. Unlike other replicative helicases, eukaryotic CMG helicase partially encircles duplex DNA at a forked junction and is stopped by a block on the non-tracking (lagging) strand.

View Article and Find Full Text PDF

At the eukaryotic DNA replication fork, it is widely believed that the Cdc45-Mcm2-7-GINS (CMG) helicase is positioned in front to unwind DNA and that DNA polymerases trail behind the helicase. Here we used single-particle EM to directly image a Saccharomyces cerevisiae replisome. Contrary to expectations, the leading strand Pol ɛ is positioned ahead of CMG helicase, whereas Ctf4 and the lagging-strand polymerase (Pol) α-primase are behind the helicase.

View Article and Find Full Text PDF

We have reconstituted a eukaryotic leading/lagging strand replisome comprising 31 distinct polypeptides. This study identifies a process unprecedented in bacterial replisomes. While bacteria and phage simply recruit polymerases to the fork, we find that suppression mechanisms are used to position the distinct eukaryotic polymerases on their respective strands.

View Article and Find Full Text PDF

DNA replication in eukaryotes is asymmetric, with separate DNA polymerases (Pol) dedicated to bulk synthesis of the leading and lagging strands. Pol α/primase initiates primers on both strands that are extended by Pol ε on the leading strand and by Pol δ on the lagging strand. The CMG (Cdc45-MCM-GINS) helicase surrounds the leading strand and is proposed to recruit Pol ε for leading-strand synthesis, but to date a direct interaction between CMG and Pol ε has not been demonstrated.

View Article and Find Full Text PDF

Eukaryotes use distinct polymerases for leading- and lagging-strand replication, but how they target their respective strands is uncertain. We reconstituted Saccharomyces cerevisiae replication forks and found that CMG helicase selects polymerase (Pol) ɛ to the exclusion of Pol δ on the leading strand. Even if Pol δ assembles on the leading strand, Pol ɛ rapidly replaces it.

View Article and Find Full Text PDF

The antiparallel structure of DNA requires lagging strand synthesis to proceed in the opposite direction of the replication fork. This imposes unique events that occur only on the lagging strand, such as primase binding to DnaB helicase, RNA synthesis, and SS B antigen (SSB) displacement during Okazaki fragment extension. Single-molecule and ensemble techniques are combined to examine the effect of lagging strand events on the Escherichia coli replisome rate and processivity.

View Article and Find Full Text PDF

Chromosomal replication machines contain coupled DNA polymerases that simultaneously replicate the leading and lagging strands. However, coupled replication presents a largely unrecognized topological problem. Because DNA polymerase must travel a helical path during synthesis, the physical connection between leading- and lagging-strand polymerases causes the daughter strands to entwine, or produces extensive build-up of negative supercoils in the newly synthesized DNA.

View Article and Find Full Text PDF

The Escherichia coli replisome contains three polymerases, one more than necessary to duplicate the two parental strands. Using single-molecule studies, we reveal two advantages conferred by the third polymerase. First, dipolymerase replisomes are inefficient at synthesizing lagging strands, leaving single-strand gaps, whereas tripolymerase replisomes fill strands almost to completion.

View Article and Find Full Text PDF

The process of chromosome duplication faces many obstacles. One way to circumvent blocks is to hop over them by placing a new clamp on a downstream primer. This resembles lagging strand synthesis, where the tight grip of polymerase to the clamp and DNA must be overcome upon completing each Okazaki fragment so it can transfer to new primed sites.

View Article and Find Full Text PDF

Replicative polymerases are tethered to DNA by sliding clamps for processive DNA synthesis. Despite attachment to a sliding clamp, the polymerase on the lagging strand must cycle on and off DNA for each Okazaki fragment. In the 'collision release' model, the lagging strand polymerase collides with the 5' terminus of an earlier completed fragment, which triggers it to release from DNA and from the clamp.

View Article and Find Full Text PDF

Single-molecule techniques are developed to examine mechanistic features of individual E. coli replisomes during synthesis of long DNA molecules. We find that single replisomes exhibit constant rates of fork movement, but the rates of different replisomes vary over a surprisingly wide range.

View Article and Find Full Text PDF

DNA polymerases attach to the DNA sliding clamp through a common overlapping binding site. We identify a small-molecule compound that binds the protein-binding site in the Escherichia coli beta-clamp and differentially affects the activity of DNA polymerases II, III, and IV. To understand the molecular basis of this discrimination, the cocrystal structure of the chemical inhibitor is solved in complex with beta and is compared with the structures of Pol II, Pol III, and Pol IV peptides bound to beta.

View Article and Find Full Text PDF

The structure of the E. coli beta clamp polymerase processivity factor has been solved in complex with primed DNA. Interestingly, the clamp directly binds the DNA duplex and also forms a crystal contact with the ssDNA template strand, which binds into the protein-binding pocket of the clamp.

View Article and Find Full Text PDF

Bacterial replicative DNA polymerases such as Polymerase III (Pol III) share no sequence similarity with other polymerases. The crystal structure, determined at 2.3 A resolution, of a large fragment of Pol III (residues 1-917), reveals a unique chain fold with localized similarity in the catalytic domain to DNA polymerase beta and related nucleotidyltransferases.

View Article and Find Full Text PDF

The PolC holoenzyme replicase of the Gram-positive Staphylococcus aureus pathogen has been reconstituted from pure subunits. We compared individual S. aureus replicase subunits with subunits from the Gram-negative Escherichia coli polymerase III holoenzyme for activity and interchangeability.

View Article and Find Full Text PDF

The sliding clamps of chromosomal replicases are acted upon by both the clamp loader and DNA polymerase. Several other proteins and polymerases also interact with the clamp. These proteins bind the clamp at the same spot and use it in sequential fashion.

View Article and Find Full Text PDF

Protein clamps are ubiquitous and essential components of DNA metabolic machineries, where they serve as mobile platforms that interact with a large variety of proteins. In this report we identify residues that are required for binding of the beta-clamp to DNA polymerase III of Escherichia coli, a polymerase of the Pol C family. We show that the alpha polymerase subunit of DNA polymerase III interacts with the beta-clamp via its extreme seven C-terminal residues, some of which are conserved.

View Article and Find Full Text PDF

Chromosomal DNA polymerases are tethered to DNA by a circular sliding clamp for high processivity. However, lagging strand synthesis requires the polymerase to rapidly dissociate on finishing each Okazaki fragment. The Escherichia coli replicase contains a subunit (tau) that promotes separation of polymerase from its clamp on finishing DNA segments.

View Article and Find Full Text PDF