Objective: Data from DNA genotyping via a 96-SNP panel in a study of 25,015 clinical samples were utilized for quality control and tracking of sample identity in a clinical sequencing network. The study aimed to demonstrate the value of both the precise SNP tracking and the utility of the panel for predicting the sex-by-genotype of the participants, to identify possible sample mix-ups.
Results: Precise SNP tracking showed no sample swap errors within the clinical testing laboratories.
Polygenic risk scores (PRSs) have improved in predictive performance, but several challenges remain to be addressed before PRSs can be implemented in the clinic, including reduced predictive performance of PRSs in diverse populations, and the interpretation and communication of genetic results to both providers and patients. To address these challenges, the National Human Genome Research Institute-funded Electronic Medical Records and Genomics (eMERGE) Network has developed a framework and pipeline for return of a PRS-based genome-informed risk assessment to 25,000 diverse adults and children as part of a clinical study. From an initial list of 23 conditions, ten were selected for implementation based on PRS performance, medical actionability and potential clinical utility, including cardiometabolic diseases and cancer.
View Article and Find Full Text PDFIntroduction: Phenotyping algorithms enable the interpretation of complex health data and definition of clinically relevant phenotypes; they have become crucial in biomedical research. However, the lack of standardization and transparency inhibits the cross-comparison of findings among different studies, limits large scale meta-analyses, confuses the research community, and prevents the reuse of algorithms, which results in duplication of efforts and the waste of valuable resources.
Recommendations: Here, we propose five independent fundamental dimensions of phenotyping algorithms-complexity, performance, efficiency, implementability, and maintenance-through which researchers can describe, measure, and deploy any algorithms efficiently and effectively.
Objective: Data from DNA genotyping via a 96-SNP panel in a study of 25,015 clinical samples were utilized for quality control and tracking of sample identity in a clinical sequencing network. The study aimed to demonstrate the value of both the precise SNP tracking and the utility of the panel for predicting the sex-by-genotype of the participants, to identify possible sample mix-ups.
Results: Precise SNP tracking showed no sample swap errors within the clinical testing laboratories.
Despite the increasing numbers of genetic assistants (GAs) in the genomics workforce, their training needs and how to best prepare GAs for their role have not been well defined. We sought to identify the current educational status of GAs, opinions on their training needs, and attitudes about GA training programs (GATPs). Survey links were emailed to NSGC members, 17 state genetic counseling (GC) professional organizations, and genomic medicine researchers.
View Article and Find Full Text PDFBackground: The implications of secondary findings detected in large-scale sequencing projects remain uncertain. We assessed prevalence and penetrance of pathogenic familial hypercholesterolemia (FH) variants, their association with coronary heart disease (CHD), and 1-year outcomes following return of results in phase III of the electronic medical records and genomics network.
Methods: Adult participants (n=18 544) at 7 sites were enrolled in a prospective cohort study to assess the clinical impact of returning results from targeted sequencing of 68 actionable genes, including , , and .
Objective: The Genomic Medicine Working Group of the National Advisory Council for Human Genome Research virtually hosted its 13th genomic medicine meeting titled "Developing a Clinical Genomic Informatics Research Agenda". The meeting's goal was to articulate a research strategy to develop Genomics-based Clinical Informatics Tools and Resources (GCIT) to improve the detection, treatment, and reporting of genetic disorders in clinical settings.
Materials And Methods: Experts from government agencies, the private sector, and academia in genomic medicine and clinical informatics were invited to address the meeting's goals.
Polygenic risk scores (PRSs), which often aggregate results from genome-wide association studies, can bridge the gap between initial discovery efforts and clinical applications for the estimation of disease risk using genetics. However, there is notable heterogeneity in the application and reporting of these risk scores, which hinders the translation of PRSs into clinical care. Here, in a collaboration between the Clinical Genome Resource (ClinGen) Complex Disease Working Group and the Polygenic Score (PGS) Catalog, we present the Polygenic Risk Score Reporting Standards (PRS-RS), in which we update the Genetic Risk Prediction Studies (GRIPS) Statement to reflect the present state of the field.
View Article and Find Full Text PDF