Publications by authors named "Rowlands D"

The benefits of dietary antioxidants against cardiovascular disease have been examined in numerous clinical trials and animal models, yet there is limited evidence linking consumption of soy isoflavones with enhanced expression of antioxidant defense genes in the vasculature. Epidemiological evidence that populations consuming soy products, rich in isoflavones genistein and daidzein, have a lower incidence of cardiovascular disease has led to the suggestion that isoflavones may be beneficial for cardiovascular health. However, population-based studies cannot prove causality and may be confounded by other dietary influences.

View Article and Find Full Text PDF

Mass changes of the Greenland Ice Sheet resolved by drainage system regions were derived from a local mass concentration analysis of NASA-Deutsches Zentrum für Luftund Raumfahrt Gravity Recovery and Climate Experiment (GRACE mission) observations. From 2003 to 2005, the ice sheet lost 101 +/- 16 gigaton/year, with a gain of 54 gigaton/year above 2000 meters and a loss of 155 gigaton/year at lower elevations. The lower elevations show a large seasonal cycle, with mass losses during summer melting followed by gains from fall through spring.

View Article and Find Full Text PDF

The p7 protein of hepatitis C virus functions as an ion channel both in vitro and in cell-based assays and is inhibited by amantadine, long alkyl chain imino-sugar derivatives, and amiloride compounds. Future drug design will be greatly aided by information on the stoichiometry and high resolution structure of p7 ion channel complexes. Here, we have refined a bacterial expression system for p7 based on a glutathione S-transferase fusion methodology that circumvents the inherent problems of hydrophobic protein purification and the limitations of chemical synthesis.

View Article and Find Full Text PDF

Foot-and-mouth disease virus causes a highly contagious disease of agricultural livestock and is of enormous economic importance. Replication of the RNA genome of the virus, via negative strand intermediates, involves an RNA-dependent RNA polymerase (3Dpol). RNA aptamers specific to this enzyme have been selected and characterized.

View Article and Find Full Text PDF

Aims: Metabolic responses to manipulation of the plasma free fatty acid (FFA) concentration were assessed in six healthy men via cross-over design to determine whether FFAs independently influence insulin sensitivity.

Methods: Intramyocellular lipid (IMCL) was measured by proton magnetic resonance spectroscopy and insulin sensitivity via frequently sampled intravenous glucose tolerance test (IVGTT) after 67 h of two identical low carbohydrate/high fat (LC) diets which were used to elevate IMCL and plasma FFAs. To uncouple the influence of FFAs and IMCL on insulin sensitivity, FFAs were suppressed 30 min prior to and during IVGTT in one treatment [LC + nicotinic acid (NA)] by NA ingestion.

View Article and Find Full Text PDF

Endothelial beta(2)-adrenoceptor (beta(2)AR) stimulation increases nitric oxide (NO) generation, but the underlying cellular mechanisms are unclear. We examined the role of l-arginine transport and of phosphorylation of NO synthase 3 (NOS-3) in beta(2)AR-mediated NO biosynthesis by human umbilical vein endothelial cells (HUVEC). To this end, we assessed l-arginine uptake, NOS activity (from l-arginine to l-citrulline conversion), membrane potential (using [(3)H]tetraphenylphosphonium), as well as serine phosphorylation of NOS-3 (by Western blotting and mass spectrometry), in HUVEC treated with betaAR agonists or cyclic AMP-elevating agents.

View Article and Find Full Text PDF

We recently reported that soy isoflavones increase gene expression of endothelial nitric-oxide synthase (eNOS) and antioxidant defense enzymes, resulting in improved endothelial function and lower blood pressure in vivo. In this study, we establish that equol (1-100 nM) causes acute endothelium- and nitric oxide (NO)-dependent relaxation of aortic rings and rapidly (2 min) activates eNOS in human aortic and umbilical vein endothelial cells. Intracellular Ca2+ and cyclic AMP levels were unaffected by treatment (100 nM, 2 min) with equol, daidzein, or genistein.

View Article and Find Full Text PDF

We investigated the effects of modifying a normal dietary fatty acid composition and ingestion of high-fat exercise supplements on gastrointestinal distress, substrate oxidation, and endurance cycling performance. Nine well-trained male cyclists completed a randomized triple-crossover comprising a 2-wk diet high in octanoate-rich esterified oil (MCFA) or twice long-chain fatty acids (LCFA). Following the diets, participants performed 3-h of cycling at 50% of peak power followed by 10 maximal sprints while ingesting either 1) a carbohydrate (CHO)+MCFA-rich oil emulsion after the 2-wk MCFA-rich dietary condition (MC-MC, Intervention) and 2) after one of the LCFA-rich dietary conditions (LC-MC, Placebo) or 3) CHO only following a LCFA-rich diet (LC-CHO, Control).

View Article and Find Full Text PDF

Aim: To investigate the effect of interaction between enteric epithelial cells and lymphocytes of Peyer's patch on the release of nitric oxide (NO) and IL-6 in response to Shigella lipopolysaccharide (LPS).

Methods: Human colonic epithelial cells (Caco-2) were mixed cocultured with lymphocytes of Peyer's patch from wild-type (C57 mice) and inducible NO synthase knockout mice, and challenged with Shigella F2a-12 LPS. Release of NO and mIL-6 was measured by Griess colorimetric assay and enzyme-linked immunosorbent assay (ELISA), respectively.

View Article and Find Full Text PDF

The objective is to evaluate and diagnose, in a controlled setting, suspected food allergy causation in patients hospitalized for management of severe, unremitting atopic dermatitis (AD). Nineteen children were hospitalized at Oregon Health and Science University with atopic dermatitis from 1986 to 2003 for food restriction, then challenge, following standard recommendations. Challenges were prioritized by categories of (a) critical foods (e.

View Article and Find Full Text PDF

It is currently believed that intramyocellular triglyceride (IMTG) accumulation and insulin resistance are a consequence of dietary fat ingestion and/or the elevated circulating lipid levels associated with chronic fat surplus. The purpose of this study was to compare the effect of short-term starvation versus low-carbohydrate (CHO)/high-fat diet on IMTG accumulation and the development of insulin resistance in physically fit men. Intramyocellular triglyceride content, measured as intramyocellular lipid (IMCL) by proton magnetic resonance spectroscopy (1H-MRS), and glucose tolerance/insulin sensitivity, assessed by frequently sampled intravenous glucose tolerance test (IVGTT), were determined after 67 h of: (a) water-only starvation (S); and (b) very low-CHO/high-fat diet (LC).

View Article and Find Full Text PDF

To evaluate the effect of temperature on running economy (RE) and stride parameters in 10 trained male runners (VO2peak 60.8 +/- 6.8 ml .

View Article and Find Full Text PDF

Knowledge of how hepatitis C virus (HCV) proteins associate with components of the host cell to form a functional replication complex is still limited. To address this issue, HCV replicon constructs were generated where either green fluorescent protein (GFP) or the Propionibacterium shermanii transcarboxylase domain (PSTCD) was introduced into the NS5A coding region. Insertion of both GFP and PSTCD was tolerated well, allowing formation of stable replicon-containing cell lines that contained viral protein and transcript levels that were comparable to those of an unmodified parental replicon.

View Article and Find Full Text PDF

Hyperphosphorylation of NS5A is thought to play a key role in controlling hepatitis C virus (HCV) RNA replication. Using a tetracycline-regulable baculovirus delivery system to introduce non-culture-adapted HCV replicons into HepG2 cells, we found that a point mutation in the active site of the viral polymerase, NS5B, led to an increase in NS5A hyperphosphorylation. Although replicon transcripts lacking elements downstream of NS5A also had altered NS5A hyperphosphorylation, this did not explain the changes resulting from polymerase inactivation.

View Article and Find Full Text PDF

The mechanism by which poliovirus infects the cell has been characterized by a combination of biochemical and structural studies, leading to a working model for cell entry. Upon receptor binding at physiological temperature, native virus (160S) undergoes a conformational change to a 135S particle from which VP4 and the N terminus of VP1 are externalized. These components interact with the membrane and are proposed to form a membrane pore.

View Article and Find Full Text PDF

The hepatitis C virus (HCV) p7 protein forms an amantadine-sensitive ion channel required for viral replication in chimpanzees, though its precise role in the life cycle of HCV is unknown. In an attempt to gain some insights into p7 function, we examined the intracellular localization of p7 using epitope tags and an anti-p7 peptide antibody, antibody 1055. Immunofluorescence labeling of p7 at its C terminus revealed an endoplasmic reticulum (ER) localization independent of the presence of its signal peptide, whereas labeling the N terminus gave a mitochondrial-type distribution in brightly labeled cells.

View Article and Find Full Text PDF

The infectious component of hepatitis B (HB) virus (HBV), the Dane particle, has a diameter of approximately 44 nm and consists of a double-layered capsid particle enclosing a circular, incomplete double-stranded DNA genome. The outer capsid layer is formed from the HB surface antigen (HBsAg) and lipid, whereas the inner layer is formed from the HB core Ag assembled into an icosahedral structure. During chronic infection HBsAg is expressed in large excess as noninfectious quasispherical particles and tubules with approximately 22-nm diameter.

View Article and Find Full Text PDF

Purpose: To compare the effects of high (HMW) versus low molecular weight (LMW) glucose polymer solutions on the pattern of substrate oxidation during exercise.

Methods: Eight cyclists (VO(2max): 63 +/- 8 mL.kg(-1).

View Article and Find Full Text PDF

Nitric oxide (NO), which is produced from l-arginine by three isoforms of NO synthase (NOS), has been implicated in reproductive functions. However, the specific role of NOS isoforms in gamete function and fertilization is not clear. Three types of NOS knockout mice were super ovulated and fertilized in vitro and in vivo.

View Article and Find Full Text PDF

Ovarian hyperstimulation syndrome (OHSS) remains one of the most life-threatening and potentially fatal complications of assisted reproduction treatments, arising from excessive stimulation of the ovaries by exogenous gonadotropins administrated during in vitro fertilization procedures, which is characterized by massive fluid shift and accumulation in the peritoneal cavity and other organs, including the lungs and the reproductive tract. The pathogenesis of OHSS remains obscure, and no definitive treatments are currently available. Using RT-PCR, Western blot, and electrophysiological techniques we show that cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel expressed in many epithelia, is involved in the pathogenesis of OHSS.

View Article and Find Full Text PDF

Aim: To investigate the effect of tetramethylpyrazine (TMP), an active compound from Ligustium Wollichii Franchat, on electrolyte transport across the distal colon of rodents and the mechanism involved.

Methods: The short-circuit current (I(SC)) technique in conjunction with pharmacological agents and specific inhibitors were used in analyzing the electrolyte transport across the distal colon of rodents. The underlying cellular signaling mechanism was investigated by radioimmunoassay analysis (RIA) and a special mouse model of cystic fibrosis.

View Article and Find Full Text PDF

We have previously demonstrated that tetramethylpyrazine (TMP) could stimulate colonic and pancreatic anion secretion. The present study investigated the signaling pathways and cellular mechanisms underlying the effect of TMP using human colonic Caco-2 cells, with permeabilized apical or basolateral membranes, in conjunction with Ussing chamber technique, intracellular cAMP and Ca2+ measurements as well as competitive RT-PCR for mRNA expression of cystic fibrosis transmembrane conductance regulator (CFTR) and Ca(2+)-dependent Cl- channels (CACC). Basolateral addition of TMP induced a short circuit current (I(SC)) response, which could be mimicked by forskolin and 3-isobutyl-1-methylxanthine (IBMX).

View Article and Find Full Text PDF

Purpose: To determine whether combined ingestion of maltodextrin and fructose during 150 min of cycling exercise would lead to exogenous carbohydrate oxidation rates higher than 1.1 g.min.

View Article and Find Full Text PDF

Structural studies of foot-and-mouth disease virus (FMDV) have largely focused on the mature viral particle, providing atomic resolution images of the spherical protein capsid for a number of sero- and sub-types, structures of the highly immunogenic surface loop, Fab and GAG receptor complexes. Additionally, structures are available for a few non-structural proteins. The chapter reviews our current structural knowledge and its impact on our understanding of the virus life cycle proceeding from the mature virus through immune evasion/inactivation, cell-receptor binding and replication and alludes to future structural targets.

View Article and Find Full Text PDF