Background: Filovirus virus-like particles (VLP) are strong immunogens with the potential for development into a safe, non-infectious vaccine. However, the large size and filamentous structure of this virus has heretofore made production of such a vaccine difficult. Herein, we present new assays and a purification procedure to yield a better characterized and more stable product.
View Article and Find Full Text PDFFiloviruses are causative agents of hemorrhagic fever, and to date no effective vaccine or therapeutic has been approved to combat infection. Filovirus glycoprotein (GP) is the critical immunogenic component of filovirus vaccines, eliciting high levels of antibody after successful vaccination. Previous work has shown that protection against both Ebola virus (EBOV) and Marburg virus (MARV) can be achieved by vaccinating with a mixture of virus-like particles (VLPs) expressing either EBOV GP or MARV GP.
View Article and Find Full Text PDFRicin is a potent toxin associated with bioterrorism for which no vaccine or specific countermeasures are currently available. A stable, non-toxic and immunogenic recombinant ricin A-chain vaccine (RTA 1-33/44-198) has been developed by protein engineering. We identified optimal formulation conditions for this vaccine under which it remained stable and potent in storage for up to 18 months, and resisted multiple rounds of freeze-thawing without stabilizing co-solvents.
View Article and Find Full Text PDFThe influence of mutationally induced changes in protein folding on development of effective neutralizing antibodies during vaccination remains largely unexplored. In this study, we probed how mutational substitutions of streptococcal pyrogenic exotoxin A (SPEA), a model bacterial superantigen, affect native conformational stability and antigenicity. Stability changes for the toxin variants were determined using circular dichroism and fluorescence measurements, and scanning calorimetry.
View Article and Find Full Text PDF