Autism spectrum disorder (ASD) is characterized by aberrations in social interaction and communication associated with repetitive behaviors and interests, with strong clinical heterogeneity. Genetic factors play an important role in ASD, but about 75% of ASD cases have an undetermined genetic risk. We extensively investigated an ASD cohort made of 102 families from the Middle Eastern population of Qatar.
View Article and Find Full Text PDFReprogramming human somatic cells into a pluripotent state, achieved through the activation of well-defined transcriptional factors known as OSKM factors, offers significant potential for regenerative medicine. While OSKM factors are a robust reprogramming method, efficiency remains a challenge, with only a fraction of cells undergoing successful reprogramming. To address this, we explored genes related to genomic integrity and cellular survival, focusing on iPSCs (A53T-PD1) that displayed enhanced colony stability.
View Article and Find Full Text PDFThyroid hormone (T3) plays a vital role in brain development and its dysregulation can impact behavior, nervous system function, and cognitive development. Large case-cohort studies have associated abnormal maternal T3 during early pregnancy to epilepsy, autism, and attention deficit hyperactivity disorder (ADHD) in children. Recent experimental findings have also shown T3's influence on the fate of neural precursor cells and raise the question of its convergence with embryonic neural progenitors.
View Article and Find Full Text PDFSomatic cells are reprogrammed with reprogramming factors to generate induced pluripotent stem cells (iPSCs), offering a promising future for disease modeling and treatment by overcoming the limitations of embryonic stem cells. However, this process remains inefficient since only a small percentage of transfected cells can undergo full reprogramming. Introducing miRNAs, such as miR-294 and miR302/3667, with reprogramming factors, has shown to increase iPSC colony formation.
View Article and Find Full Text PDFColorectal cancer (CRC) is influenced by infiltration of immune cell populations in the tumor microenvironment. While elevated levels of cytotoxic T cells are associated with improved prognosis, limited studies have reported associations between CD4 T cells and disease outcomes. We recently performed transcriptomic profiling and comparative analyses of sorted CD4 and CD8 tumor-infiltrating lymphocytes (TILs) from bulk tumors of CRC patients with varying disease stages.
View Article and Find Full Text PDFTo elucidate the epigenetic alterations behind the upregulation of immune checkpoints and T cell exhaustion markers in colorectal cancer (CRC) patients. mRNA expressions of different immune checkpoint/exhaustion markers were analyzed by quantitative real-time reverse transcriptase PCR and epigenetic investigations were performed using bisulfite sequencing and chromatin immunoprecipitation quantitative PCR. mRNA expressions of PD-1, TIM-3, CTLA-4, PD-L1 and TOX2 were significantly upregulated in CD4 and CD8 tumor-infiltrating lymphocytes and bulk CRC tumor tissues.
View Article and Find Full Text PDFColorectal cancer (CRC) has high mortality rates, especially in patients with advanced disease stages, who often do not respond to therapy. The cellular components of the tumor microenvironment are essentially responsible for dictating disease progression and response to therapy. Expansion of different myeloid cell subsets in CRC tumors has been reported previously.
View Article and Find Full Text PDFBackground: Cytotoxic CD8 T cell-mediated response is the most important arm of adaptive immunity, which dictates the capacity of the host immune response in eradicating tumor cells. Due to tumor intrinsic and/or extrinsic factors, the density and function of CD8 tumor-infiltrating lymphocytes (TILs) could be compromised, leading to poor prognosis and survival.
Methods: Using RNA-Seq, transcriptomes of sorted CD3CD8 TILs from treatment-naïve colorectal cancer (CRC) patients at advanced stages (III and IV) were compared with those from patients with early stages (I and II).
Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2, a novel coronavirus strain. Some studies suggest that COVID-19 could be an immune-related disease, and failure of effective immune responses in initial stages of viral infection could contribute to systemic inflammation and tissue damage, leading to worse disease outcomes. T cells can act as a double-edge sword with both pro- and anti-roles in the progression of COVID-19.
View Article and Find Full Text PDFMyeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells with potent immunosuppressive functions, which can inhibit the activation of immune responses under a steady-state condition and pathological conditions. We performed transcriptomic profiling of circulating CD33HLA-DR myeloid antigen-presenting cells (APCs) and CD33HLA-DR myeloid cells (potentially MDSCs) in healthy individuals. We sorted both subpopulations from peripheral blood mononuclear cells (PBMCs) of 10 healthy donors and performed RNA sequencing (RNA-Seq).
View Article and Find Full Text PDFMyeloid cells, including antigen-presenting cells (APCs) and myeloid-derived suppressor cells (MDSCs) play opposing roles to orchestrate innate and adaptive immune responses during physiological and pathological conditions. We investigated the role of DNA methylation in regulating the transcription of inhibitory/suppressive molecules in myeloid suppressive cells (identified as CD33HLA-DR) in comparison to APCs. We selected a number of immune checkpoints (ICs), IC ligands, and immunosuppressive molecules that have been implicated in MDSC function, including PD-L1, TIM-3, VISTA, galectin-9, TGF-β, ARG1 and MMP9.
View Article and Find Full Text PDFDespite recent advances in colorectal cancer (CRC) treatment, a large proportion of patients show limited responses to therapies, especially in advanced stages. There is an urgent need to identify prognostic biomarkers and/or therapeutic targets in advanced stages, aiming to improve the efficacy of current treatments. We aimed to determine prognostic biomarkers in tumor tissue and circulation of CRC patients, with a special focus on T cell exhaustion markers.
View Article and Find Full Text PDFT cell immunoglobulin mucin-3 (TIM-3) is an immune checkpoint identified as one of the key players in regulating T-cell responses. Studies have shown that TIM-3 is upregulated in the tumor microenvironment (TME). However, the precise role of TIM-3 in colorectal cancer (CRC) TME is yet to be elucidated.
View Article and Find Full Text PDFBackground: Increased numbers of myeloid-derived suppressor cells (MDSCs) are positively correlated with poor prognosis and reduced survivals of cancer patients. They play central roles in tumor immune evasion and tumor metastasis. However, limited data are available on phenotypic/transcriptomic characteristics of the different MDSCs subsets in cancer.
View Article and Find Full Text PDFTriple negative breast cancer (TNBC) is the most aggressive type of breast cancer, which shows resistance to common breast cancer therapies, as it lacks the expression of the most common breast cancer targets. Therefore, TNBC treatment remains a challenge. Targeting programmed cell death-ligand 1 (PD-L1) by monoclonal antibodies (mAbs), for example, atezolizumab, has revolutionized the treatment for various cancer types.
View Article and Find Full Text PDFAberrant expression of immune checkpoints (ICs) in cancer creates an immunosuppressive microenvironment, which supports immune evasion of tumor cells. We have recently reported that epigenetic modifications are critical for ICs expression in the tumor microenvironment (TME) of primary breast cancer (PBC) and colorectal cancer (CRC). Herein, we investigated transcriptomic expression of ICs (PD-1, CTLA-4, LAG-3, TIM-3, TIGIT) and PD-L1 in peripheral blood of PBC and CRC patients, compared to healthy donors (HD).
View Article and Find Full Text PDFBackground: Colorectal cancer (CRC) is the third most commonly diagnosed human malignancy worldwide. Upregulation of inhibitory immune checkpoints by tumor-infiltrating immune cells (TIICs) or their ligands by tumor cells leads to tumor evasion from host immunosurveillance. Changes in DNA methylation pattern and enrichment of methylated histone marks in the promoter regions could be major contributors to the upregulation of immune checkpoints (ICs) in the tumor microenvironment (TME).
View Article and Find Full Text PDFBackground: High expression of immune checkpoints in tumor microenvironment plays significant roles in inhibiting anti-tumor immunity, which is associated with poor prognosis and cancer progression. Major epigenetic modifications in both DNA and histone could be involved in upregulation of immune checkpoints in cancer.
Methods: Expressions of different immune checkpoint genes and PD-L1 were assessed using qRT-PCR, and the underlying epigenetic modifications including CpG methylation and repressive histone abundance were determined using bisulfite sequencing, and histone 3 lysine 9 trimethylation (H3K9me3) and histone 3 lysine 27 trimethylation (H3K27me3) chromatin immunoprecipitation assays (ChIP), respectively.
PurposeWe aimed to identify the genetic cause to a clinical syndrome encompassing hypohidrosis, electrolyte imbalance, lacrimal gland dysfunction, ichthyosis, and xerostomia (HELIX syndrome), and to comprehensively delineate the phenotype.MethodsWe performed homozygosity mapping, whole-genome sequencing, gene sequencing, expression studies, functional tests, protein bioinformatics, and histological characterization in two unrelated families with HELIX syndrome.ResultsWe identified biallelic missense mutations (c.
View Article and Find Full Text PDF15q deletions have been described in association with intellectual disability and autism spectrum disorder (ASD). Previous reports have supported the role of 15q24 low copy repeats (LCRs) in mediating alternatively sized genomic rearrangements. Based on our reported finding of a 15q24 deletion coinciding with two LCR regions in a patient with epilepsy and ASD, we recommend that patients with 15q24 deletions be evaluated for ASD for early institution of therapy.
View Article and Find Full Text PDFFamilial Mediterranean fever (FMF, OMIM 249100) is the most common hereditary fever, resulting from mutations in MEFV. FMF is characterized by episodic febrile attacks and polyserositis. Renal AA-amyloidosis is a major complication, which often leads to end-stage renal disease in untreated patients.
View Article and Find Full Text PDFHyperimmunoglobulinemia D Syndrome (HIDS) has rarely been reported in Arabs. Moreover, the simultaneous presence of mutations in MEFV and MVK segregating in the same family is exceptional. We report an Arabic girl presenting since the age of 8-years with two patterns of recurrent episodes of fever, and associated with a spectrum of clinical features suggestive of overlap between familial Mediterranean fever (FMF) and HIDS.
View Article and Find Full Text PDFWe report on a patient with distal trisomy 10q syndrome presenting with a few previously undescribed physical features, as well as, autism spectrum disorder (ASD). We recommend that patients with distal trisomy 10q syndrome should have a behavioral evaluation for ASD for the early institution of therapy.
View Article and Find Full Text PDF