IEEE Trans Biomed Circuits Syst
June 2023
The article presented herein proposes an alternative skin cancer screening method that delivers non-invasive diagnosis and monitoring of skin lesions by leveraging electromagnetic waves with radio frequency technology and circuits. The proposed handheld device, named SkanMD, comprises a sensitive electromagnetic sensor, customized radio frequency wave analyzer circuits, and machine learning algorithms. The device is used in clinical studies that are performed on a total of 46 individuals that are composed of 18 patients with pre-diagnosed skin cancer, 10 individuals with benign nevi, 7 patients with arbitrary diseases, and 11 healthy individuals.
View Article and Find Full Text PDFQuantum computers have enabled solving problems beyond the current machines' capabilities. However, this requires handling noise arising from unwanted interactions in these systems. Several protocols have been proposed to address efficient and accurate quantum noise profiling and mitigation.
View Article and Find Full Text PDFThis work introduces novel body-matched, vasculature-inspired, quasi-antenna-arrays that act as electromagnetic sensors to instantaneously, continuously, and wirelessly sense glucose variations in the bloodstream. The proposed sensors are personalized, leverage electromagnetic waves, and are coupled with a custom machine-learning-based signal-processing module. These sensors are flexible, and embedded in wearable garments such as socks, which provide conformity to curved skin surfaces and movement resilience.
View Article and Find Full Text PDFPainless, needle-free, and continuous glucose monitoring sensors are needed to enhance the life quality of diabetic patients. To that extent, we propose a first-of-its-kind, highly sensitive, noninvasive continuous glycemic monitoring wearable multisensor system. The proposed sensors are validated on serum, animal tissues, and animal models of diabetes and in a clinical setting.
View Article and Find Full Text PDF