Objective And Design: To explore the role of mammalian target of rapamycin 2 (mTORC2) in the activation of inflammatory and oxidative responses in rodent models of acute injury and metabolic stress.
Material: The impact of nephrilin, an inhibitor of mTORC2 complex, was assessed in three CD-1 mouse models of acute xenobiotic stress and in a hypertensive Dahl rat model of metabolic stress.
Methods: Animals received daily subcutaneous bolus injections of saline or 4 mg/kg nephrilin.
Purpose: Enediynes are potent inducers of DNA damage, but their clinical usefulness has been limited. Here we report the thermal enhancement of cytotoxicity of two novel metalloenediyne compounds at concentrations that are either not or minimally cytotoxic at 37°C, and present evidence regarding possible mechanisms for enhanced cytotoxicity.
Materials And Methods: HeLa cells were exposed to (Z)-N,N'-bis[1-pyridyl-2-yl-meth-(E)-ylidene]octa-4-ene-2,6-diyne-1,8-diamine (PyED) (which becomes metallated in culture medium) or ((Z)-N,N'-bis[quinolin-2-yl-meth-(E)-ylidene]octa-4-ene-2,6-diyne-1,8-diamine)zinc(II) chloride (QuinED · ZnCl(2)) at 37°C or 42.
Purpose: Corticorelin acetate (CrA) is a synthetic form of corticotropin-releasing factor undergoing clinical trials in the treatment of peritumoral brain edema (PBE). We sought to investigate preclinically its potential as an antitumor agent against human solid tumors and to assess its ability to enhance the therapeutic activity of bevacizumab (BEV) in these same models.
Methods: The in vivo efficacy of CrA as a single agent and in combination with the antiangiogenic agent, BEV, was examined in two preclinical human tumor models, the MX-1 breast and Colo-205 colon carcinomas.
In the yeast Saccharomyces cerevisiae, the G protein beta gamma subunits are essential for pheromone signaling. The Galpha subunit Gpa1 can also promote signaling, but the effectors in this pathway are not well characterized. To identify candidate Gpa1 effectors, we expressed the constitutively active Gpa1(Q323L) mutant in each of nearly 5000 gene-deletion strains and measured mating-specific responses.
View Article and Find Full Text PDFPhospholipase D (PLD) is a PtdCho-hydrolyzing enzyme that plays central signaling functions in eukaryotic cells. We previously demonstrated that action of a set of four nonclassical and membrane-associated Sec14p-like phosphatidylinositol transfer proteins (PITPs) is required for optimal activation of yeast PLD in vegetative cells. Herein, we focus on mechanisms of Sfh2p and Sfh5p function in this regulatory circuit.
View Article and Find Full Text PDFPITPs regulate the interface between lipid metabolism and cellular functions, but the fundamental nature of this regulation is not understood. Yeast and mouse studies demonstrate strict coupling of individual PITPs to specific cellular activities, but the invisibility of these specificities in in vitro models for PITP activity is remarkable. In our opinion, delineation of PITP functions requires the continued application of genetic approaches such as those summarized here.
View Article and Find Full Text PDFPhosphatidylinositol/phosphatidylcholine transfer proteins (PITPs) are ubiquitous and highly conserved proteins that are believed to regulate lipid-mediated signaling events. Their ubiquity and conservation notwithstanding, PITPs remain remarkably uninvestigated. Little is known about the coupling of specific PITPs to explicit cellular functions or the mechanisms by which PITPs interface with appropriate cellular functions.
View Article and Find Full Text PDFPhosphatidylinositol transfer proteins (PITPs) modulate signal transduction pathways and membrane-trafficking functions in eukaryotes. Here, we describe the characterization of a gene family from Lotus japonicus that encodes a novel class of plant PITP-like proteins (LjPLPs) and that is regulated in an unusual nodule-specific manner. Members of this gene family were identified based on their nucleotide sequence homology with a previously described cDNA, LjNOD16, which encodes the L.
View Article and Find Full Text PDFThe Schizosaccharomyces pombe spo20-KC104 mutation was originally isolated in a screen for sporulation-deficient mutants, and the spo20-KC104 mutant exhibits temperature-sensitive growth. Herein, we report that S. pombe, spo20(+) is essential for fission yeast cell viability and is constitutively expressed throughout the life cycle.
View Article and Find Full Text PDFYeast phosphatidylinositol transfer protein (Sec14p) is essential for Golgi function and cell viability. We now report a characterization of five yeast SFH (Sec Fourteen Homologue) proteins that share 24-65% primary sequence identity with Sec14p. We show that Sfh1p, which shares 64% primary sequence identity with Sec14p, is nonfunctional as a Sec14p in vivo or in vitro.
View Article and Find Full Text PDFA new yeast strain, designated pstB2, that is defective in the conversion of nascent phosphatidylserine (PtdSer) to phosphatidylethanolamine (PtdEtn) by PtdSer decarboxylase 2, has been isolated. The pstB2 strain requires ethanolamine for growth. Incubation of cells with [(3)H]serine followed by analysis of the aminoglycerophospholipids demonstrates a 50% increase in the labeling of PtdSer and a 72% decrease in PtdEtn formation in the mutant relative to the parental strain.
View Article and Find Full Text PDFTo obtain information about the evolution of the cholinesterases, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in the vertebrates, we investigated the cholinesterase (ChE) activity of the cephalochordate amphioxus (Branchiostoma floridae and Branchiostoma lanceolatum). On the basis of evidence from enzymology, pharmacology, and molecular biology, we conclude that amphioxus possesses two ChE activities and two ChE genes. Two covalent inhibitors of cholinesterases were able to pharmacologically isolate the two activities as drug-sensitive ChE and drug-resistant ChE.
View Article and Find Full Text PDF