Publications by authors named "Roush D"

The fifth modeling workshop (5MW) was held in June 2023 at Favrholm, Denmark and sponsored by Recovery of Biological Products Conference Series. The goal of the workshop was to assemble modeling practitioners to review and discuss the current state, progress since the last fourth mini modeling workshop (4MMW), gaps and opportunities for development, deployment and maintenance of models in bioprocess applications. Areas of focus were four categories: biophysics and molecular modeling, mechanistic modeling, computational fluid dynamics (CFD) and plant modeling.

View Article and Find Full Text PDF

The polishing step in the downstream processing of therapeutic antibodies removes residual impurities from Protein A eluates. Among the various classes of impurities, antibody fragments are especially challenging to remove due to the broad biomolecular diversity generated by a multitude of fragmentation patterns. The current approach to fragment removal relies on ion exchange or mixed-mode adsorbents operated in bind-and-gradient-elution mode.

View Article and Find Full Text PDF

Although antibody fragments are a critical impurity to remove from process streams, few platformable purification techniques have been developed to this end. In this work, a novel size-exclusion-mixed-mode (SEMM) resin was characterized with respect to its efficacy in mAb fragment removal. Inverse size-exclusion chromatography showed that the silica-based resin had a narrow pore size distribution and a median pore radius of roughly 6.

View Article and Find Full Text PDF

Product association of host-cell proteins (HCPs) to monoclonal antibodies (mAbs) is widely regarded as a mechanism that can enable HCP persistence through multiple purification steps and even into the final drug substance. Discussion of this mechanism often implies that the existence or extent of persistence is directly related to the strength of binding but actual measurements of the binding affinity of such interactions remain sparse. Two separate avenues of investigation of HCP-mAb binding are reported here.

View Article and Find Full Text PDF

In this work, we employ a recently developed biophysical technique that uses diethylpyrocarbonate (DEPC) covalent labeling and mass spectrometry for the identification of mAb binding patches to two multimodal cation exchange resins at different pH. This approach compares the labeling results obtained in the bound and unbound states to identify residues that are sterically shielded and thus located in the mAb binding domains. The results at pH 6 for one mAb (mAb B) indicated that while the complementarity determining region (CDR) had minimal interactions with both resins, the F domain was actively involved in binding.

View Article and Find Full Text PDF

Host-cell proteins (HCPs) are the foremost class of process-related impurities to be controlled and removed in downstream processing steps in monoclonal antibody (mAb) manufacturing. However, some HCPs may evade clearance in multiple purification steps and reach the final drug product, potentially threatening drug stability and patient safety. This study extends prior work on HCP characterization and persistence in mAb process streams by using mass spectrometry (MS)-based methods to track HCPs through downstream processing steps for seven mAbs that were generated by five different cell lines.

View Article and Find Full Text PDF

Advancement in all disciplines (art, science, education, and engineering) requires a careful balance of disruption and advancement of classical techniques. Often technologies are created with a limited understanding of fundamental principles and are prematurely abandoned. Over time, knowledge improves, new opportunities are identified, and technology is reassessed in a different light leading to a renaissance.

View Article and Find Full Text PDF

In the production of biopharmaceuticals such as monoclonal antibodies (mAbs) and vaccines, the residual amounts of host-cell proteins (HCPs) are among the critical quality attributes. In addition to overall HCP levels, individual HCPs may elude purification, potentially causing issues in product stability or patient safety. Such HCP persistence has been attributed mainly to biophysical interactions between individual HCPs and the product, resin media, or residual chromatin particles.

View Article and Find Full Text PDF

Euendolithic, or true-boring, cyanobacteria actively erode carbonate-containing substrata in a wide range of environments and pose significant risks to calcareous marine fauna. Their boring activities cause structural damage and increase susceptibility to disease and are projected to only intensify with global climate change. Most research has, however, focused on tropical coral systems, and limited information exists on the global distribution, diversity, and substratum specificity of euendoliths.

View Article and Find Full Text PDF

The growth of advanced analytics in manufacturing monoclonal antibodies (mAbs) has highlighted the challenges associated with the clearance of host cell proteins (HCPs). Of special concern is the removal of "persistent" HCPs, including immunogenic and mAb-degrading proteins, that co-elute from the Protein A resin and can escape the polishing steps. Responding to this challenge, we introduced an ensemble of peptide ligands that target the HCPs in Chinese hamster ovary (CHO) cell culture fluids and enable mAb purification via flow-through affinity chromatography.

View Article and Find Full Text PDF

Increasing data volumes on high-throughput sequencing instruments such as the NovaSeq 6000 leads to long computational bottlenecks for common metagenomics data preprocessing tasks such as adaptor and primer trimming and host removal. Here, we test whether faster recently developed computational tools (Fastp and Minimap2) can replace widely used choices (Atropos and Bowtie2), obtaining dramatic accelerations with additional sensitivity and minimal loss of specificity for these tasks. Furthermore, the taxonomic tables resulting from downstream processing provide biologically comparable results.

View Article and Find Full Text PDF

Nonionic surfactant polysorbates, including PS-80 and PS-20, are commonly used in the formulation of biotherapeutic products for both preventing surface adsorption and acting as stabilizer against protein aggregation. Trace levels of residual host cell proteins (HCPs) with lipase or esterase enzymatic activity have been shown to degrade polysorbates in biologics formulation. The measurement and control of these low abundance, high-risk HCPs for polysorbate degradation are an industry-wide challenge to achieve desired shelf life of biopharmaceuticals in liquid formulation, especially for high-concentration formulation product development.

View Article and Find Full Text PDF

Significant increases in cell density and product titer have led to renewed interest in the application of depth filtration for initial clarification of cell culture fluid in antibody production. The performance of these depth filters will depend on the local pressure and velocity distribution within the filter capsule, but these are very difficult to probe experimentally, leading to challenges in both process design and scale-up. We have used a combination of carefully designed experimental studies and computational fluid dynamics (CFD) to examine these issues in both lab-scale (Supracap 50) and pilot-scale (Stax ) depth filter modules, both employing dual-layer lenticular PDH4 media containing diatomaceous earth.

View Article and Find Full Text PDF

This article describes a summary of discussions and outcomes from the 2019 Viral Clearance Symposium Session 4 on the utilization of knowledge, both from within and external to a given organization (e.g., across the interdisciplinary space), that supports viral clearance strategy and process understanding, including engagement with Health Authorities in the development and implementation.

View Article and Find Full Text PDF

Phylogenetic placement of query samples on an existing phylogeny is increasingly used in molecular ecology, including sample identification and microbiome environmental sampling. As the size of available reference trees used in these analyses continues to grow, there is a growing need for methods that place sequences on ultra-large trees with high accuracy. Distance-based placement methods have recently emerged as a path to provide such scalability while allowing flexibility to analyse both assembled and unassembled environmental samples.

View Article and Find Full Text PDF

In this study, NMR and molecular dynamics simulations were employed to study IgG1 F binding to multimodal surfaces. Gold nanoparticles functionalized with two multimodal cation-exchange ligands (Capto and Nuvia) were synthesized and employed to carry out solution-phase NMR experiments with the F. Experiments with perdeuterated N-labeled F and the multimodal surfaces revealed micromolar residue-level binding affinities as compared to millimolar binding affinities with these ligands in free solution, likely due to cooperativity and avidity effects.

View Article and Find Full Text PDF

Cyanobacteria are a widespread and important bacterial phylum, responsible for a significant portion of global carbon and nitrogen fixation. Unfortunately, reliable and accurate automated classification of cyanobacterial 16S rRNA gene sequences is muddled by conflicting systematic frameworks, inconsistent taxonomic definitions (including the phylum itself), and database errors. To address this, we introduce Cydrasil 3 ( https://www.

View Article and Find Full Text PDF

Cyanobacteria classified as Microcoleus steenstrupii play a significant role as pioneers of biological soil crusts (biocrusts), but this taxon is recognized to constitute a diverse complex of strains and field populations. With the aim of clarifying its systematics, we conducted a polyphasic characterization of this and allied taxa. A 16S ribosomal gene meta-analysis of published environmental sequences showed that the complex encompasses a variety of well supported genus-level clades with clade-specific environmental preferences, indicating significant niche differentiation.

View Article and Find Full Text PDF

Multimodal chromatography is a powerful approach for purifying proteins that uses ligands containing multiple modes of interaction. Recent studies have shown that selectivity in multimodal chromatographic separations is a function of the ligand structure and geometry. Here, we performed molecular dynamics simulations to explore how the ligand structure and geometry affect ligand-water interactions and how these differences in solution affect the nature of protein-ligand interactions.

View Article and Find Full Text PDF

In this study, the binding of multimodal chromatographic ligands to the IgG1 F domain were studied using nuclear magnetic resonance and molecular dynamics simulations. Nuclear magnetic resonance experiments carried out with chromatographic ligands and a perdeuterated N-labeled F domain indicated that while single-mode ion exchange ligands interacted very weakly throughout the F surface, multimodal ligands containing negatively charged and aromatic moieties interacted with specific clusters of residues with relatively high affinity, forming distinct binding regions on the F . The multimodal ligand-binding sites on the F were concentrated in the hinge region and near the interface of the C 2 and C 3 domains.

View Article and Find Full Text PDF

In this study, the thermodynamics of binding of two industrial mAbs to multimodal cation exchange systems was investigated over a range of buffer and salt conditions via a van't Hoff analysis of retention data. Isocratic chromatography was first employed over a range of temperature and salt conditions on three multimodal resins and the retention data were analyzed in both the low and high salt regimes. While mAb retention decreased with salt for all resins at low salts, retention increased at high salts for two of the resins, suggesting a shift from electrostatic to more hydrophobic driven interactions.

View Article and Find Full Text PDF

The Third Modeling Workshop focusing on bioprocess modeling was held in Kenilworth, NJ in May 2019. A summary of these Workshop proceedings is captured in this manuscript. Modeling is an active area of research within the biotechnology community, and there is a critical need to assess the current state and opportunities for continued investment to realize the full potential of models, including resource and time savings.

View Article and Find Full Text PDF

Chinese hamster ovary (CHO) cells are the host cell of choice for manufacturing biologic drugs, like monoclonal antibody, in the biopharmaceutical industry. Retrovirus-like particles (RVLPs) are made during the manufacturing process with CHO cells and it is incumbent upon the manufacturer to perform risk assessment based on levels of RVLP in unprocessed bulk. Quantification of RVLP using electron microscopy (EM) is the standard method.

View Article and Find Full Text PDF

The increased cell density and product titer in biomanufacturing have led to greater use of depth filtration as part of the initial clarification of cell culture fluid, either as a stand-alone unit operation or after centrifugation. Several recent studies have shown that depth filters can also reduce the concentration of smaller impurities like host cell proteins (HCP) and DNA, decreasing the burden on subsequent chromatographic operations. The objective of this study was to evaluate the HCP removal properties of the Pall PDH4 depth filter media, a model depth filter containing diatomaceous earth, cellulose fibers, and a binder.

View Article and Find Full Text PDF

Recombinant protein therapeutics, vaccines, and plasma products have a long record of safety. However, the use of cell culture to produce recombinant proteins is still susceptible to contamination with viruses. These contaminations cost millions of dollars to recover from, can lead to patients not receiving therapies, and are very rare, which makes learning from past events difficult.

View Article and Find Full Text PDF