Publications by authors named "Roudaut C"

Article Synopsis
  • X-linked chronic granulomatous disease (CGD) causes serious infections because the body can't fight germs properly.
  • A gene therapy trial was done on four patients, where two showed good results while the other two had problems with treatment working.
  • Scientists found that the patients who struggled had fewer important cells (HSCs) and specific gene changes that could explain why the treatment didn't work, suggesting new ways to help these patients.
View Article and Find Full Text PDF

Patients with Wiskott-Aldrich syndrome (WAS) lacking a human leukocyte antigen-matched donor may benefit from gene therapy through the provision of gene-corrected, autologous hematopoietic stem/progenitor cells. Here, we present comprehensive, long-term follow-up results (median follow-up, 7.6 years) (phase I/II trial no.

View Article and Find Full Text PDF

Sickle cell disease (SCD) and transfusion-dependent β-thalassemia (TDT) are the most prevalent monogenic disorders worldwide. Trial HGB-205 ( NCT02151526 ) aimed at evaluating gene therapy by autologous CD34 cells transduced ex vivo with lentiviral vector BB305 that encodes the anti-sickling β-globin expressed in the erythroid lineage. HGB-205 is a phase 1/2, open-label, single-arm, non-randomized interventional study of 2-year duration at a single center, followed by observation in long-term follow-up studies LTF-303 ( NCT02633943 ) and LTF-307 ( NCT04628585 ) for TDT and SCD, respectively.

View Article and Find Full Text PDF

Objective: To investigate the glycemic balance before, during and after the 2016 Paris Marathon using a real-time continuous glucose monitoring (RT-CGM) system in patients with type 1 diabetes mellitus in a prospective single-center observational study.

Methods: Inclusion criteria were as follows: type 1 diabetes mellitus; age ≥18 years; HbA1c < 9%. Participants performed two 2h-preparatory races (PR) before the Marathon and were monitored with RT-CGM 24h before, during and 72h after each race.

View Article and Find Full Text PDF

Recessively inherited limb girdle muscular dystrophy (LGMD) type 2A is the most common LGMD worldwide. Here, we report the first single missense variant in CAPN3 causing dominantly inherited calpainopathy. A 43-year-old proband, his father and two sons were heterozygous for a c.

View Article and Find Full Text PDF

In gene therapy with human hematopoietic stem and progenitor cells (HSPCs), each gene-corrected cell and its progeny are marked in a unique way by the integrating vector. This feature enables lineages to be tracked by sampling blood cells and using DNA sequencing to identify the vector integration sites. Here, we studied 5 cell lineages (granulocytes, monocytes, T cells, B cells, and natural killer cells) in patients having undergone HSPC gene therapy for Wiskott-Aldrich syndrome or β hemoglobinopathies.

View Article and Find Full Text PDF

Limb-girdle muscular dystrophy type 2A (LGMD2A or LGMDR1) is a neuromuscular disorder caused by mutations in the calpain 3 gene (). Previous experiments using adeno-associated viral (AAV) vector-mediated calpain 3 gene transfer in mice indicated cardiac toxicity associated with the ectopic expression of the calpain 3 transgene. Here, we performed a preliminary dose study in a severe double-knockout mouse model deficient in calpain 3 and dysferlin.

View Article and Find Full Text PDF

Although studies of mixed chimerism following hematopoietic stem cell transplantation in patients with sickle cell disease (SCD) may provide insights into the engraftment needed to correct the disease and into immunological reconstitution, an extensive multilineage analysis is lacking. We analyzed chimerism simultaneously in peripheral erythroid and granulomonocytic precursors/progenitors, highly purified B and T lymphocytes, monocytes, granulocytes and red blood cells (RBC). Thirty-four patients with mixed chimerism and ≥12 months of follow-up were included.

View Article and Find Full Text PDF

IUT enables rapid immune reconstitution and avoids many clinical and economic problems; however, the indication is still limited. IUT may be a treatment option in select cases, eg, fetuses exposed to a significant infectious risk, where a matched sibling donor exists.

View Article and Find Full Text PDF

Introduction: We report the genetic analysis of a large series of 76 Algerian patients from 65 unrelated families who presented with early onset severe muscular dystrophy and a clinical phenotype resembling limb-girdle muscular dystrophy type 2C.

Methods: To define the genetic basis of the diseases in these families, we undertook a series of analyses of the γ-sarcoglycan (SGCG) and DMD genes.

Results: Fifteen families were shown to carry SGCG variants.

View Article and Find Full Text PDF

Objective: To identify the genetic defects present in 3 families with muscular dystrophy, contractures, and calpain 3 deficiency.

Methods: We performed targeted exome sequencing on one patient presenting a deficiency in calpain 3 on Western blot but for which mutations in the gene had been excluded. The identification of a homozygous truncating mutation in the M-line part of titin prompted us to sequence this region in 2 additional patients presenting similar clinical and biochemical characteristics.

View Article and Find Full Text PDF

Recombinant adeno-associated virus (rAAV) is currently the best vector for gene delivery into the skeletal muscle. However, the 5-kb packaging size of this virus is a major obstacle for large gene transfer. This past decade, many different strategies were developed to circumvent this issue (concatemerization-splicing, overlapping vectors, hybrid dual or fragmented AAV).

View Article and Find Full Text PDF

Defects in TRIM32 were reported in limb-girdle muscular dystrophy type 2H (LGMD2H), sarcotubular myopathies (STM) and in Bardet-Biedl syndrome. Few cases have been described to date in LGMD2H/STM, but this gene is not systematically analysed because of the absence of specific signs and difficulties in protein analysis. By using high-throughput variants screening techniques, we identified variants in TRIM32 in two patients presenting nonspecific LGMD.

View Article and Find Full Text PDF

Muscular dystrophies are a group of genetically distinct diseases for which no treatment exists. While gene transfer approach is being tested for several of these diseases, such strategies can be hampered when the size of the corresponding complementary DNA (cDNA) exceeds the packaging capacity of adeno-associated virus vectors. This issue concerns, in particular, dysferlinopathies and titinopathies that are due to mutations in the dysferlin (DYSF) and titin (TTN) genes.

View Article and Find Full Text PDF

Background: Genetic defects in calpain3 (CAPN3) lead to limb-girdle muscular dystrophy type 2A, a disease of the skeletal muscle that affects predominantly the proximal limb muscles. We previously demonstrated the potential of adeno-associated virus-mediated transfer of the CAPN3 gene to correct the pathological signs in a murine model for limb-girdle muscular dystrophy type 2A after intramuscular and locoregional administrations.

Methods And Results: Here, we showed that intravenous injection of calpain3-expressing vector in mice can induce mortality in a dose-dependent manner.

View Article and Find Full Text PDF

Mutations in dysferlin and anoctamin 5 are the cause of muscular disorders, with the main presentations as limb-girdle muscular dystrophy or Miyoshi type of distal myopathy. Both these proteins have been implicated in sarcolemmal resealing. On the basis of similarities in associated phenotypes and protein functions, we tested the hypothesis that ANO5 protein could compensate for dysferlin absence.

View Article and Find Full Text PDF

Mutations in the dysferlin gene are the cause of Limb-girdle Muscular Dystrophy type 2B and Miyoshi Myopathy. The dysferlin protein has been implicated in sarcolemmal resealing, leading to the idea that the pathophysiology of dysferlin deficiencies is due to a deficit in membrane repair. Here, we show using two different approaches that fulfilling membrane repair as asseyed by laser wounding assay is not sufficient for alleviating the dysferlin deficient pathology.

View Article and Find Full Text PDF

To evaluate the physiological demands and effects of different pacing strategies on performance during the new combined event (CE) of the modern pentathlon (consisting of three pistol shooting sessions interspersed by three 1-km running legs). Nine elite pentathletes realised five tests: a free-paced CE during an international competition; an incremental running test to determine [Formula: see text] and its related velocity ([Formula: see text]) and three experimental time-trial CE, where the pacing strategy was manipulated (CE(ref), CE(100%), CE(105%)). CE(ref) reproduced the international competition strategy with a 170-m fast running start within the first 2 km.

View Article and Find Full Text PDF

A multiprotein complex encompassing a transcription regulator, cardiac ankyrin repeat protein (CARP), and the calpain 3 protease was identified in the N2A elastic region of the giant sarcomeric protein titin. The present study aimed to investigate the function(s) of this complex in the skeletal muscle. We demonstrate that CARP subcellular localization is controlled by the activity of calpain 3: the higher the calpain 3, the more important the sarcomeric retention of CARP.

View Article and Find Full Text PDF

The dominant tibial muscular dystrophy (TMD) and recessive limb-girdle muscular dystrophy 2J are allelic disorders caused by mutations in the C-terminus of titin, a giant sarcomeric protein. Both clinical presentations were initially identified in a large Finnish family and linked to a founder mutation (FINmaj). To further understand the physiopathology of these two diseases, we generated a mouse model carrying the FINmaj mutation.

View Article and Find Full Text PDF

Deficiency of the dysferlin protein presents as two major clinical phenotypes: limb-girdle muscular dystrophy type 2B and Miyoshi myopathy. Dysferlin is known to participate in membrane repair, providing a potential hypothesis to the underlying pathophysiology of these diseases. The size of the dysferlin cDNA prevents its direct incorporation into an adeno-associated virus (AAV) vector for therapeutic gene transfer into muscle.

View Article and Find Full Text PDF

In an attempt to identify potential therapeutic targets for the correction of muscle wasting, the gene expression of several pivotal proteins involved in protein metabolism was investigated in experimental atrophy induced by transient or definitive denervation, as well as in four animal models of muscular dystrophies (deficient for calpain 3, dysferlin, alpha-sarcoglycan and dystrophin, respectively). The results showed that: (a) the components of the ubiquitin-proteasome pathway are upregulated during the very early phases of atrophy but do not greatly increase in the muscular dystrophy models; (b) forkhead box protein O1 mRNA expression is augmented in the muscles of a limb girdle muscular dystrophy 2A murine model; and (c) the expression of cardiac ankyrin repeat protein (CARP), a regulator of transcription factors, appears to be persistently upregulated in every condition, suggesting that CARP could be a hub protein participating in common pathological molecular pathway(s). Interestingly, the mRNA level of a cell cycle inhibitor known to be upregulated by CARP in other tissues, p21(WAF1/CIP1), is consistently increased whenever CARP is upregulated.

View Article and Find Full Text PDF

Myostatin is a negative regulator of muscle mass whose inhibition has been proposed as a therapeutic strategy for muscle-wasting conditions. Indeed, blocking myostatin action through different strategies has proved beneficial for the pathophysiology of the dystrophin-deficient mdx mouse. In this report, we tested the inhibition of myostatin by AAV-mediated expression of a mutated propeptide in animal models of two limb-girdle muscular dystrophies: LGMD2A caused by mutations in the calpain 3 (CAPN3) gene and LGMD2D caused by mutations in the alpha-sarcoglycan gene (SGCA).

View Article and Find Full Text PDF

Limb-girdle muscular dystrophy type 2A (LGMD2A) is an autosomal recessive muscular disorder caused by mutations in the gene coding for calpain 3, a calcium-dependent protease. We developed an in vitro assay that can detect the proteolytic activity of calpain 3 in a muscle sample. This assay is based on the use of an inactive calpain 3 as a substrate for active calpain 3 molecules.

View Article and Find Full Text PDF