Publications by authors named "Rouck G"

Sour beers produced by barrel-aging of conventionally fermented beers are becoming increasingly popular. However, as the intricate interactions between the wood, the microbes and the beer are still unclear, wood maturation often leads to inconsistent end products with undesired sensory properties. Previous research on industrial barrel-aging of beer suggests that beer parameters like the ethanol content and bitterness play an important role in the microbial community composition and beer chemistry, but their exact impact still remains to be investigated.

View Article and Find Full Text PDF

During storage, beer staling coincides with a gradual increase in the concentrations of aldehydes resulting in the appearance of undesirable flavours. Cysteinylated aldehydes, also referred to as 2-substituted 1,3-thiazolidine-4-carboxylic acids, have been proposed as potential precursors of this increase. This study aimed to further understand the origin of aldehydes in aged beer, by monitoring both free and cysteinylated aldehydes throughout the brewing process, from the raw materials until the stored product.

View Article and Find Full Text PDF

Currently, there is a strong interest in barrel ageing of finished, conventionally fermented beers, as a novel way to produce sour beers with a rich and complex flavour profile. The production process, however, remains largely a process of trial and error, often resulting in profit losses and inconsistency in quality. To improve product quality and consistency, a better understanding of the interactions between microorganisms, wood and maturing beer is needed.

View Article and Find Full Text PDF

Traditional sour beers are produced by spontaneous fermentations involving numerous yeast and bacterial species. One of the traits that separates sour beers from ales and lagers is the high concentration of organic acids such as lactic acid and acetic acid, which results in reduced pH and increased acidic taste. Several challenges complicate the production of sour beers through traditional methods.

View Article and Find Full Text PDF

Increasing popularity of sour beer urges the development of novel solutions for controlled fermentations both for fast acidification and consistency in product flavor and quality. One possible approach is the use of in co-fermentation with species, which produce lactic acid as a major end-product of carbohydrate catabolism. The ability of lactobacilli to ferment beer is determined by their capacity to sustain brewing-related stresses, including hop iso-α acids, low pH and ethanol.

View Article and Find Full Text PDF

Aldehydes originating from malt play an important role in beer flavour deterioration. In order to better understand the influence of malting process on beer staling, it is necessary to acquire a reliable analytical methodology for determination of beer staling aldehydes in malt. Therefore, the aim of this study was to evaluate extraction parameters, which allow quantification of beer staling aldehydes present in pale malts.

View Article and Find Full Text PDF

This paper describes the method validation for the simultaneous determination of seven cysteinylated aldehydes, i.e. 2-substituted 1,3-thiazolidines-4-carboxylic acids, using ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS).

View Article and Find Full Text PDF

Background: Beer flavor stability is important to brewers as a result of the increased global demand for beer. Increasing export leads to prolonged periods of transportation and storage and causes fresh flavor deterioration. Therefore, the present study examined the effect of different temperatures in combination with vibrations on beer quality.

View Article and Find Full Text PDF

Lager beer is the most consumed alcoholic beverage in the world. Its production process is marked by a fermentation conducted at low (8 to 15°C) temperatures and by the use of Saccharomyces pastorianus, an interspecific hybrid between Saccharomyces cerevisiae and the cold-tolerant Saccharomyces eubayanus. Recent whole-genome-sequencing efforts revealed that the currently available lager yeasts belong to one of only two archetypes, "Saaz" and "Frohberg.

View Article and Find Full Text PDF