Brain disorders, especially neurodegenerative diseases, affect millions of people worldwide. There is no causal treatment available; therefore, there is an unmet clinical need for finding therapeutic options for these diseases. Epigenetic research has resulted in identification of various genomic loci with differential disease-specific epigenetic modifications, mainly DNA methylation.
View Article and Find Full Text PDFEpigenetic modifications play a crucial role in regulating gene expression patterns. Through epigenetic editing approaches, the chromatin structure is modified and the activity of the targeted gene can be reprogrammed without altering the DNA sequence. By using the CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic repeats) platform with nuclease-deactivated dCas9 proteins to direct epigenetic effector domains (EDs) to genomic regulatory regions, the expression of the targeted gene can be modulated.
View Article and Find Full Text PDFTo fully exploit the potentials of reprogramming the epigenome through CRISPR/dCas9 systems for epigenetic editing, there is a growing need for improved transfection methods. With the utilization of constructs often with large sizes and the wide array of cell types used to read out the effect of epigenetic editing in different biological applications, it is evident that ongoing optimalization of transfection protocols tailored to each specific experimental setup is essential. Whether the goal is the production of viral particles using human embryonic kidney (HEK) cells or the direct examination of epigenomic modifications in the target cell type, continuous refinement of transfection methods is crucial.
View Article and Find Full Text PDFThe introduction of CRISPR/Cas systems has resulted in a strong impulse for the field of gene-targeted epigenome/epigenetic reprogramming (EpiEditing), where EpiEditors consisting of a DNA binding part for targeting and an enzymatic part for rewriting of chromatin modifications are applied in cells to alter chromatin modifications at targeted genome loci in a directed manner. Pioneering studies preceding this era indicated causal relationships of chromatin marks instructing gene expression. The accumulating evidence of chromatin reprogramming of a given genomic locus resulting in gene expression changes opened the field for mainstream applications of this technology in basic and clinical research.
View Article and Find Full Text PDFEpigenetic research has brought several important technological achievements, including identifying epigenetic clocks and signatures, and developing epigenetic editing. The potential military applications of such technologies we discuss are stratifying soldiers' health, exposure to trauma using epigenetic testing, information about biological clocks, confirming child soldiers' minor status using epigenetic clocks, and inducing epigenetic modifications in soldiers. These uses could become a reality.
View Article and Find Full Text PDFUbiquitin carboxyl-terminal hydrolase L1 (UCHL1) is highly expressed in smokers, but little is known about the molecular mechanism of UCHL1 in airway epithelium and its possible role in affecting extracellular matrix (ECM) remodelling in the underlying submucosa. Since cigarette smoking is a major cause of lung diseases, we studied its effect on UCHL1 expression and DNA methylation patterns in human bronchial epithelial cells, obtained after laser capture micro-dissection (LCM) or isolated from residual tracheal/main stem bronchial tissue. Targeted regulation of UCHL1 expression CRISPR/dCas9 based-epigenetic editing was used to explore the function of UCHL1 in lung epithelium.
View Article and Find Full Text PDFMetabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by a constant accumulation of lipids in the liver. This hepatic lipotoxicity is associated with a dysregulation of the first step in lipid catabolism, known as beta oxidation, which occurs in the mitochondrial matrix. Eventually, this dysregulation will lead to mitochondrial dysfunction.
View Article and Find Full Text PDFBackground: Fibroadenomas are the most common benign breast lesions in women. They present as a unilateral mass and can rapidly enlarge in size through hormonal changes. Fibroadenomas could be classified as small or giant, and as simple or complex.
View Article and Find Full Text PDFBackground: Carotid artery revascularization can result in new ischemic brain lesions on diffusion-weighted magnetic resonance imaging. This study aimed to investigate the relationship between periprocedural ischemic diffusion-weighted imaging (DWI) lesions after carotid artery revascularization and recurrent long-term cerebrovascular events.
Methods: A secondary observational prospective cohort analysis of existing clinical trial data was performed on 162 patients with symptomatic carotid stenosis that were previously randomized to carotid artery stenting or carotid endarterectomy in the ICSS (International Carotid Stenting Study) and included in the magnetic resonance imaging substudy.
Precise gene-editing using CRISPR/Cas9 technology remains a long-standing challenge, especially for genes with low expression and no selectable phenotypes in Chlamydomonas reinhardtii, a classic model for photosynthesis and cilia research. Here, we developed a multi-type and precise genetic manipulation method in which a DNA break was generated by Cas9 nuclease and the repair was mediated using a homologous DNA template. The efficacy of this method was demonstrated for several types of gene editing, including inactivation of two low-expression genes (CrTET1 and CrKU80), the introduction of a FLAG-HA epitope tag into VIPP1, IFT46, CrTET1 and CrKU80 genes, and placing a YFP tag into VIPP1 and IFT46 for live-cell imaging.
View Article and Find Full Text PDFHibernation consists of alternating torpor-arousal phases, during which animals cope with repetitive hypothermia and ischaemia-reperfusion. Due to limited transcriptomic and methylomic information for facultative hibernators, we here conducted RNA and whole-genome bisulfide sequencing in liver of hibernating Syrian hamster (). Gene ontology analysis was performed on 844 differentially expressed genes and confirmed the shift in metabolic fuel utilization, inhibition of RNA transcription and cell cycle regulation as found in seasonal hibernators.
View Article and Find Full Text PDFPlasminogen activator, urokinase () is involved in cell migration, proliferation and tissue remodeling. upregulation is associated with an increase in aggressiveness, metastasis, and invasion of several cancer types, including breast cancer. In patients, this translates into decreased sensitivity to hormonal treatment, and poor prognosis.
View Article and Find Full Text PDFDNA methylation is an essential epigenetic mark, strongly associated with gene expression regulation. Aberrant DNA methylation patterns underlie various diseases and efforts to intervene with DNA methylation signatures are of great clinical interest. Technological developments to target writers or erasers of DNA methylation to specific genomic loci by epigenetic editing resulted in successful gene expression modulation, also in in vivo models.
View Article and Find Full Text PDFMutations in either mitochondrial DNA (mtDNA) or nuclear genes that encode mitochondrial proteins may lead to dysfunctional mitochondria, giving rise to mitochondrial diseases. Some mitochondrial myopathies, however, present without a known underlying cause. Interestingly, methylation of mtDNA has been associated with various clinical pathologies.
View Article and Find Full Text PDFCell plasticity is a crucial hallmark leading to cancer metastasis. Upregulation of Rho/ROCK pathway drives actomyosin contractility, protrusive forces, and contributes to the occurrence of highly invasive amoeboid cells in tumors. Cancer stem cells are similarly associated with metastasis, but how these populations arise in tumors is not fully understood.
View Article and Find Full Text PDFEndothelial cell inflammatory activation and dysfunction are key events in the pathophysiology of atherosclerosis, and are associated with an elevated risk of cardiovascular events. Yet, therapies specifically targeting the endothelium and atherosclerosis are lacking. Here, we review how endothelial behaviour affects atherogenesis and pose that the endothelium may be an efficacious cellular target for antiatherogenic therapies.
View Article and Find Full Text PDFVulvoperineal defects resulting from surgical treatment of (pre)malignancies may result in reconstructive challenges. The vertical rectus abdominis muscle flap and, more recently, the fasciocutaneous lotus petal flap are often used for reconstruction in this area. The goal of this review is to compare the postoperative complications of application of these flaps.
View Article and Find Full Text PDFCadmium (Cd), a highly toxic heavy metal, is widespreadly distributed in the environment. Chronic exposure to Cd is associated with the development of several diseases including cancers. Over the decade, many researches have been carried on various models to examine the acute effects of Cd; yet, limited knowledge is known about the long-term Cd exposure, especially in the human lung cells.
View Article and Find Full Text PDFBackground: Breast implants are frequently used in cosmetic and reconstructive breast surgery. Capsular contracture, the most common long-term complication, is usually graded using the Baker classification. Despite its widespread use, the reliability of the Baker classification has never been established.
View Article and Find Full Text PDFEpigenetic editing refers to the locus-specific targeting of epigenetic enzymes to rewrite the local epigenetic landscape of an endogenous genomic site, often with the aim of transcriptional reprogramming. Implementing clustered regularly interspaced short palindromic repeat-dCas9 greatly accelerated the advancement of epigenetic editing, yielding preclinical therapeutic successes using a variety of epigenetic enzymes. Here, we review the current applications of these epigenetic editing tools in mammals and shed light on biochemical improvements that facilitate versatile applications.
View Article and Find Full Text PDFThe number of diabetic patients in Europe and world-wide is growing. Diabetes confers a 2-fold higher risk for vascular disease. Lack of insulin production (Type 1 diabetes, T1D) or lack of insulin responsiveness (Type 2 diabetes, T2D) causes systemic metabolic changes such as hyperglycemia (HG) which contribute to the pathology of diabetes.
View Article and Find Full Text PDFEpigenetic editing, an emerging technique used for the modulation of gene expression in mammalian cells, is a promising strategy to correct disease-related gene expression. Although epigenetic reprogramming results in sustained transcriptional modulation in several in vivo models, further studies are needed to develop this approach into a straightforward technology for effective and specific interventions. Important goals of current research efforts are understanding the context-dependency of successful epigenetic editing and finding the most effective epigenetic effector(s) for specific tasks.
View Article and Find Full Text PDFEur J Vasc Endovasc Surg
June 2020
Objective: Cerebral white matter lesions (WMLs) and lacunar infarcts are surrogates of cerebral small vessel disease (SVD). WML severity as determined by trained radiologists predicts post-operative stroke or death in patients undergoing carotid endarterectomy (CEA). It is unknown whether routine pre-operative brain imaging reports as part of standard clinical practice also predict short and long term risk of stroke and death after CEA.
View Article and Find Full Text PDF