Matrix metalloproteinases (MMPs) are a family of endopeptidases that degrade extracellular matrix proteins, functioning in various physiological processes such as tissue remodeling, embryogenesis, and morphogenesis. Dysregulation of these enzymes is linked to multiple diseases. Specific inhibition of particular MMPs is crucial for anti-MMP drug development as some MMPs have shown antidisease properties.
View Article and Find Full Text PDFRealizing a sensitive photon-number-dependent phase shift on a light beam is required both in classical and quantum photonics. It may lead to new applications for classical and quantum photonics machine learning or pave the way for realizing photon-photon gate operations. Nonlinear phase-shifts require efficient light-matter interaction, and recently quantum dots coupled to nanophotonic devices have enabled near-deterministic single-photon coupling.
View Article and Find Full Text PDFQuantum photonic integrated circuits, composed of linear-optical elements, offer an efficient way for encoding and processing quantum information on-chip. At their core, these circuits rely on reconfigurable phase shifters, typically constructed from classical components such as thermo- or electro-optical materials, while quantum solid-state emitters such as quantum dots are limited to acting as single-photon sources. Here, we demonstrate the potential of quantum dots as reconfigurable phase shifters.
View Article and Find Full Text PDFMatrix Metalloproteinases (MMPs) are drivers of many diseases including cancer and are established targets for drug development. Tissue inhibitors of metalloproteinases (TIMPs) are human proteins that inhibit MMPs and are being pursued for the development of anti-MMP therapeutics. TIMPs possess many attractive properties of a drug candidate, such as complete MMP inhibition, low toxicity and immunogenicity, high tissue permeability and others.
View Article and Find Full Text PDFMorphological variations in the left atrial appendage (LAA) are associated with different levels of ischemic stroke risk for patients with atrial fibrillation (AF). Studying LAA morphology can elucidate mechanisms behind this association and lead to the development of advanced stroke risk stratification tools. However, current categorical descriptions of LAA morphologies are qualitative in nature, and inconsistent across studies, which impedes advancements in our understanding of stroke pathogenesis in AF.
View Article and Find Full Text PDFEfficient light-matter interaction at the single-photon level is of fundamental importance in emerging photonic quantum technology. A fundamental challenge is addressing multiple quantum emitters at once, as intrinsic inhomogeneities of solid-state platforms require individual tuning of each emitter. We present the realization of two semiconductor quantum dot emitters that are efficiently coupled to a photonic-crystal waveguide and individually controllable by applying a local electric Stark field.
View Article and Find Full Text PDFTailored photonics cavities enhance light-matter interactions, ultimately enabling a fully coherent quantum interface. Here, we report an integrated microdisk cavity containing self-assembled quantum dots to coherently route photons between different access waveguides. We measure a Purcell factor of = 6.
View Article and Find Full Text PDFCoherent photon-emitter interfaces offer a way to mediate efficient nonlinear photon-photon interactions, much needed for quantum information processing. Here we experimentally study the case of a two-level emitter, a quantum dot, coupled to a single optical mode in a nanophotonic waveguide. We carry out few-photon transport experiments and record the statistics of the light to reconstruct the scattering matrix elements of one- and two-photon components.
View Article and Find Full Text PDFLight is a union of electric and magnetic fields, and nowhere is the complex relationship between these fields more evident than in the near fields of nanophotonic structures. There, complicated electric and magnetic fields varying over subwavelength scales are generally present, which results in photonic phenomena such as extraordinary optical momentum, superchiral fields, and a complex spatial evolution of optical singularities. An understanding of such phenomena requires nanoscale measurements of the complete optical field vector.
View Article and Find Full Text PDFEstablishing a highly efficient photon-emitter interface where the intrinsic linewidth broadening is limited solely by spontaneous emission is a key step in quantum optics. It opens a pathway to coherent light-matter interaction for, e.g.
View Article and Find Full Text PDFWe introduce core-shell plasmonic nanohelices, highly tunable structures that have a different response in the visible for circularly polarized light of opposite handedness. The glass core of the helices is fabricated using electron beam induced deposition and the pure gold shell is subsequently sputter coated. Optical measurements allow us to explore the chiral nature of the nanohelices, where differences in the response to circularly polarized light of opposite handedness result in a dissymmetry factor of 0.
View Article and Find Full Text PDFThe feasibility of many proposals in nanoquantum-optics depends on the efficient coupling of photons to individual quantum emitters, the possibility to control this interaction on demand, and the scalability of the experimental platform. To address these issues, we report on chip-based systems made of one-dimensional subwavelength dielectric waveguides (nanoguides) and polycyclic aromatic hydrocarbon molecules. We discuss the design and fabrication requirements, present data on extinction spectroscopy of single molecules coupled to a nanoguide mode, and show how an external optical beam can switch the propagation of light via a nonlinear optical process.
View Article and Find Full Text PDFNanophotonic interfaces between single emitters and light promise to enable new quantum optical technologies. Here, we use a combination of finite element simulations and analytic quantum theory to investigate the interaction of various quantum emitters with slot-waveguide rings. We predict that for rings with radii as small as 1.
View Article and Find Full Text PDFWe present experimental observations of visible wavelength second- and third-harmonic generation on single plasmonic nanowires of variable widths. We identify that near-infrared surface plasmon polaritons, which are guided along the nanowire, act as the source of the harmonics generation. We discuss the underlying mechanism of this nonlinear process, using a combination of spatially resolved measurements and numerical simulations to show that the visible harmonics are generated via a combination of both local and propagating plasmonic modes.
View Article and Find Full Text PDFControlling photon emission by single emitters with nanostructures is crucial for scalable on-chip information processing. Nowadays, nanoresonators can affect the lifetime of linear dipole emitters, while nanoantennas can steer the emission direction. Expanding this control to the emission of orbital angular momentum-changing transitions would enable a future coupling between solid state and photonic qubits.
View Article and Find Full Text PDFWe use symmetry considerations to understand and unravel near-field measurements, ultimately showing that we can spatially map three distinct fields using only two detectors. As an example, we create 2D field maps of the out-of-plane magnetic field and two in-plane fields for a silicon ridge waveguide. Furthermore, we are able to identify and remove polarization mixing of less than 1/30 of our experimental signals.
View Article and Find Full Text PDFWavelength-scale optical modulators are essential building blocks for future on-chip optical interconnects. Any modulator design is a trade-off between bandwidth, size and fabrication complexity, size being particularly important as it determines capacitance and actuation energy. Here, we demonstrate an interesting alternative that is only 3 μm long, only uses silicon on insulator (SOI) material and accommodates several nanometres of optical bandwidth at 1550 nm.
View Article and Find Full Text PDFWe demonstrate nanoscale photonic point-to-point measurements characterizing a single component inside an all-optical signal-processing chip. We perform spectrally resolved near-field scanning optical microscopy on ultrashort pulses propagating inside a slow light photonic crystal waveguide, which is part of a composite sample. A power study reveals a reshaping of the pulse's spectral density, which we model using the nonlinear Schrödinger equation.
View Article and Find Full Text PDFWe demonstrate that interference of absorption pathways can be used to control resonant coupling of light to guided modes in a manner analogous to quantum coherent control or electronically induced transparency. We illustrate the control of resonant coupling that interference affords using a plasmonic test system where tuning the phase of a grating is sufficient to vary the transfer of energy into the surface plasmon polariton by a factor of over 10(6). We show that such a structure could function as a one-way coupler, and present a simple explanation for the underlying physics.
View Article and Find Full Text PDFWe introduce the concept of an indirect photonic transition and demonstrate its use in a dynamic delay line to alter the group velocity of an optical pulse. Operating on an ultrafast time scale, we show continuously tunable delays of up to 20 ps, using a slow light photonic crystal waveguide only 300 μm in length. Our approach is flexible, in that individual pulses in a pulse stream can be controlled independently, which we demonstrate by operating on pulses separated by just 30 ps.
View Article and Find Full Text PDFWe map the complex electric fields associated with the scattering of surface plasmon polaritons by single subwavelength holes of different sizes in thick gold films. We identify and quantify the different modes associated with this event, including a radial surface wave with an angularly isotropic amplitude. This wave is shown to arise from the out-of-plane electric dipole induced in the hole, and we quantify the corresponding polarizability, which is in excellent agreement with electromagnetic theory.
View Article and Find Full Text PDF