Publications by authors named "Rotem Shemesh"

Efforts to tap into the broad antimicrobial, insecticidal, and antioxidant activities of essential oils (EOs) are limited due to their strong odor and susceptibility to light and oxidation. Encapsulation of EOs and subsequent drying overcome these limitations and extend their applications. This study characterized freeze-dried (lyophilized) emulsions of eugenol (EU) and thymol (TY) EOs, encapsulated by chemically unmodified cellulose, a sustainable and low-cost resource.

View Article and Find Full Text PDF

Essential oils (EOs) are volatile natural organic compounds, which possess pesticidal properties. However, they are vulnerable to heat and light, limiting their range of applications. Encapsulation of EOs is a useful approach to overcome some of these limitations.

View Article and Find Full Text PDF

This paper presents compression molding of peptide assemblies with low-density polyethylene (LDPE) for the robust production of antimicrobial polymeric films. These films show a significant reduction of colony-forming units and plaque-forming units. Moreover, they significantly inhibited the growth of three different fungi.

View Article and Find Full Text PDF

Significant research has been directed toward the incorporation of bioactive plant extracts or essential oils (EOs) into polymers to endow the latter with antimicrobial functionality. EOs offer a unique combination of having broad antimicrobial activity from a natural source, generally recognized as safe (GRAS) recognition in the US, and a volatile nature. However, their volatility also presents a major challenge in their incorporation into polymers by conventional high-temperature-processing techniques.

View Article and Find Full Text PDF