Electrocatalytic alcohol oxidation in acid offers a promising alternative to the kinetically sluggish water oxidation reaction toward low-energy H generation. However, electrocatalysts driving active and selective acidic alcohol electrochemical transformation are still scarce. In this work, we demonstrate efficient alcohol-to-aldehyde conversion achieved by reticular chemistry-based modification of the catalyst's immediate environment.
View Article and Find Full Text PDFElectrochemical CO reduction reaction in aqueous electrolytes is a promising route to produce added-value chemicals and decrease carbon emissions. However, even in Gas-Diffusion Electrode devices, low aqueous CO solubility limits catalysis rate and selectivity. Here, we demonstrate that when assembled over a heterogeneous electrocatalyst, a film of nitrile-modified Metal-Organic Framework (MOF) acts as a remarkable CO-solvation layer that increases its local concentration by ~27-fold compared to bulk electrolyte, reaching 0.
View Article and Find Full Text PDF