Publications by authors named "Roswitha Zeis"

Carbon electrodes are one of the key components of vanadium redox flow batteries (VRFBs), and their wetting behavior, electrochemical performance, and tendency to side reactions are crucial for cell efficiency. Herein, we demonstrate three different types of electrode modifications: poly(-toluidine) (POT), Vulcan XC 72R, and an iron-doped carbon-nitrogen base material (Fe-N-C + carbon nanotube (CNT)). By combining synchrotron X-ray imaging with traditional characterization approaches, we give thorough insights into changes caused by each modification in terms of the electrochemical performance in both half-cell reactions, wettability and permeability, and tendency toward the hydrogen evolution side reaction.

View Article and Find Full Text PDF

Vanadium redox flow battery (VRFB) electrodes face challenges related to their long-term operation. We investigated different electrode treatments mimicking the aging processes during operation, including thermal activation, aging, soaking, and storing. Several characterization techniques were used to deepen the understanding of the treatment of carbon felts.

View Article and Find Full Text PDF

Understanding the interaction of phosphoric acid and porous electrocatalysts is of vital importance for a rational design of high performance phosphoric acid based fuel cells on a molecular level. We demonstrate for the first time that NMR spectroscopy can be used for elucidating the preferred distribution sites of phosphoric acid in various nanoporous carbons. A pore size dependent negative chemical shift of 31P is observed, serving as a distinct signature of pore occupation, and applied for analysing a commercial catalyst (Pt@Vulcan) as a practical application.

View Article and Find Full Text PDF

Electrospinning has been demonstrated to be a versatile technique for producing hydrophobic gas diffusion layers (GDLs) with customized pore structures for the enhanced performance of polymer electrolyte membrane (PEM) fuel cells. However, the degradation characteristics of custom hydrophobic electrospun GDLs (eGDLs) have not yet been explored. Here, for the first time, we investigate the degradation characteristics of custom hydrophobic eGDLs via an ex situ accelerated degradation protocol using HO.

View Article and Find Full Text PDF

The wetting behavior and affinity to side reactions of carbon-based electrodes in vanadium redox flow batteries (VRFBs) are highly dependent on the physical and chemical surface structures of the material, as well as on the cell design itself. To investigate these properties, a new cell design was proposed to facilitate synchrotron X-ray imaging. Three different flow geometries were studied to understand the impact on the flow dynamics, and the formation of hydrogen bubbles.

View Article and Find Full Text PDF

Highly porous carbon-carbon composite electrodes for the implementation in redox flow battery systems have been synthesized by a novel soft-templating approach. A PAN-based carbon felt was embedded into a solution containing a phenolic resin, a nitrogen source (pyrrole-2-carboxaldehyde) and a sulfur source (2-thiophenecarboxaldehyde), as well as a triblock copolymer (Pluronic F-127) acting as the structure-directing agent. By this strategy, highly porous carbon phase co-doped with nitrogen and sulfur was obtained inside the macroporous carbon felt.

View Article and Find Full Text PDF

The performance of high-temperature polymer electrolyte membrane fuel cells (HT-PEMFC) is critically dependent on the selection of materials and optimization of individual components. A conventional high-temperature membrane electrode assembly (HT-MEA) primarily consists of a polybenzimidazole (PBI)-type membrane containing phosphoric acid and two gas diffusion electrodes (GDE), the anode and the cathode, attached to the two surfaces of the membrane. This review article provides a survey on the materials implemented in state-of-the-art HT-MEAs.

View Article and Find Full Text PDF

This study explores the assembly in the crystalline state of a class of pentacenes that are substituted along their long edges with aromatic rings forming rigid, cruciform molecules. The crystals were grown from the gas phase, and their structures were compared with DFT-optimized geometries. Both crystallographic and computed structures show that a planar acene core is the exception rather than the rule.

View Article and Find Full Text PDF

At moderate temperatures in flowing gas, pentacene undergoes a disproportionation reaction to produce 6,13-dihydropentacene (DHP) and a series of polycondensed aromatic hydrocarbons, including the previously unknown peripentacene (PP). The process requires activation by heating to 320 degrees C and is possibly catalyzed by impurities such as DHP, 6,13-pentacenequinone (PQ), Al, or Fe found in the starting materials. These impurities also result in a decrease in the intrinsic field-effect mobility (FEM) of pentacene crystals.

View Article and Find Full Text PDF

The substitution of chloro or bromo groups in tetracene gives rise to the change of crystal structure, having a substantial effect on carrier transport. Halogenated tetracene derivatives were synthesized and grown into single crystals. Monosubstituted 5-bromo- and 5-chlorotetracenes have the herringbone-type structure, while 5,11-dichlorotetracene has the slipped pi stacking structure.

View Article and Find Full Text PDF