Here we demonstrate that binuclear dinitrosyl iron complexes with thiol-containing ligands (glutathione and mercaptosuccinate, B-DNIC-GSH and B-DNIC-MS, respectively) exert cytotoxic effects on MCF7 human breast cancer cells. We showed that they are mediated by nitrosonium cations released from these complexes (NO). This finding is supported by the cytotoxic effect of both B-DNICs on MCF7 cells evidenced to retain or was even promoted in the presence of N-Methyl-D-glucamine dithiocarbamate (MGD).
View Article and Find Full Text PDFTwo approaches to the synthesis of dinitrosyl iron complexes (DNIC) with glutathione and l-cysteine in aqueous solutions based on the use of gaseous NO and appropriate S-nitrosothiols, viz., S-nitrosoglutathione (GS-NO) or S-nitrosocysteine (Cys-NO), respectively, are considered. A schematic representation of a vacuum unit for generation and accumulation of gaseous NO purified from the NO admixture and its application for obtaining aqueous solutions of DNIC in a Thunberg apparatus is given.
View Article and Find Full Text PDFIt has been established that treatment of mice with sodium nitrite, S-nitrosoglutathione and the water-soluble nitroglycerine derivative isosorbide dinitrate (ISDN) as NO donors initiates in vivo synthesis of significant amounts of EPR-silent binuclear dinitrosyl iron complexes (B-DNIC) with thiol-containing ligands in the liver and other tissues of experimental mice. This effect is especially apparent if NO donors are administered to mice simultaneously with the Fe-citrate complex. Similar results were obtained in experiments on isolated liver and other mouse tissues treated with gaseous NО in vitro and during stimulation of endogenous NO synthesis in the presence of inducible NO synthase.
View Article and Find Full Text PDFComposites of a collagen matrix and dinitrosyl iron complexes with glutathione (DNIC-GS) (in a dose of 4.0 μmoles per item) in the form of spongy sheets (DNIC-Col) were prepared and then topically applied in rat excisional full-thickness skin wound model. The effects of DNIC-Col were studied in comparison with spontaneously healing wounds (SpWH) and wounds treated with collagen sponges (Col) without DNIC-GS.
View Article and Find Full Text PDFEPR, optical, electrochemical and stopped-flow methods were used to demonstrate that Fe(NO)2 fragments in paramagnetic mononuclear and diamagnetic binuclear forms of dinitrosyl iron complexes with glutathione are reversibly reduced by a two-electron mechanism to be further transformed from the initial state with d(7) configuration into states with the d(8) and d(9) electronic configurations of the iron atom. Under these conditions, both forms of DNIC display identical optical and EPR characteristics in state d(9) suggesting that reduction of the binuclear form of DNIC initiates their reversible decomposition into two mononuclear dinitrosyl iron fragments, one of which is EPR-silent (d(8)) and the other one is EPR-active (d(9)). Both forms of DNIC produce EPR signals with the following values of the g-factor: g⊥=2.
View Article and Find Full Text PDFThe diamagnetic binuclear form of dinitrosyl iron complexes (B-DNIC) with glutathione can be easily synthesized in the air at ambient temperature. The synthetic protocol includes consecutive addition to distilled water of glutathione, which decreases the pH of the test solution to 4.0, a bivalent iron salt (e.
View Article and Find Full Text PDFUsing the electron paramagnetic resonance (EPR) and optical spectrophotometric methods, it has been established that biologically active, water-soluble dinitrosyl iron complexes (DNIC) with glutathione are predominantly represented by the diamagnetic binuclear form (B-DNIC) even in the presence of a 10-fold excess of glutathione non-incorporated into DNIC at neutral pH. With the increase in рН to 10-11, B-DNIC are fully converted into the paramagnetic mononuclear form (М-DNIC) with a characteristic EPR signal at g⊥=2.04, g‖=2.
View Article and Find Full Text PDFIt has been found that heating of solutions of the binuclear form of dinitrosyl iron complexes (B-DNIC) with glutathione in a degassed Thunberg apparatus (рН 1.0, 70°С, 6 h) results in their decomposition with a concomitant release of four gaseous NO molecules per one B-DNIC. Further injection of air into the Thunberg apparatus initiates fast oxidation of NO to NO₂ and formation of two GS-NO molecules per one B-DNIC.
View Article and Find Full Text PDF