Directional transport of the phytohormone auxin is a versatile, plant-specific mechanism regulating many aspects of plant development. The recently identified plant hormones, strigolactones (SLs), are implicated in many plant traits; among others, they modify the phenotypic output of PIN-FORMED (PIN) auxin transporters for fine-tuning of growth and developmental responses. Here, we show in pea and Arabidopsis that SLs target processes dependent on the canalization of auxin flow, which involves auxin feedback on PIN subcellular distribution.
View Article and Find Full Text PDFStrigolactones (SLs) are important plant hormones that are produced via the carotenoid biosynthetic pathway and occur at extremely low concentrations in various plant species. They regulate root development, play important roles in symbioses between higher plants and mycorrhizal fungi, and stimulate germination of plant-parasitic and species. Chemical analysis is central to research on the biochemistry of SLs and their roles in developmental biology and plant physiology.
View Article and Find Full Text PDFBackground: Strigolactones (SLs) are plant hormones that play various roles in plant development. The chemical stability of SLs depends on the solvent, the pH, and the presence of nucleophiles. Hydrolysis leads to detachment of the butenolide ring, and plays a crucial role in the initial stages of the signal-transduction process occurring between the receptor and the SL signaling molecule.
View Article and Find Full Text PDF