Publications by authors named "Rossomme S"

Background: This manuscript describes modifications to a pencil beam scanning (PBS) proton gantry that enables ultra-high dose rates (UHDR) irradiation, including treatment planning and validation.

Methods: Beamline modifications consisted of opening the energy slits and setting the degrader to pass-through mode to maximize the dose rate. A range shifter was inserted upstream from the isocenter to enlarge the spot size and make it rotationally symmetric.

View Article and Find Full Text PDF

Accurate reference dosimetry with ionization chambers (ICs) relies on correcting for various influencing factors, including ion recombination. Theoretical frameworks, such as the Boag and Jaffe theories, are conventionally used to describe the ion recombination correction factors. Experimental methods are time consuming, the applicability may be limited and, in some cases, impractical to be used in clinical routine.

View Article and Find Full Text PDF

. Ionization chambers, mostly used for beam calibration and for reference dosimetry, can show high recombination effects in pulsed high dose rate proton beams. The aims of this paper are: first, to characterize the linearity response of newly designed asymmetrical beam monitor chambers (ABMC) in a 100-226 MeV pulsed high dose rate per pulse scanned proton beam; and secondly, to calibrate the ABMC with a PPC05 (IBA Dosimetry) plane parallel ionization chamber and compare to calibration with a home-made Faraday cup (FC).

View Article and Find Full Text PDF

. This investigation aims to experimentally determine the charge collection efficiency (CCE) of six commercially available parallel-plate ionisation chamber (PPIC) models in ultra-high dose-per-pulse (UHDPP) electron beams..

View Article and Find Full Text PDF

Purpose: To fully characterize the flat panel detector of the new Sphinx Compact device with scanned proton and carbon ion beams.

Materials And Methods: The Sphinx Compact is designed for daily QA in particle therapy. We tested its repeatability and dose rate dependence as well as its proportionality with an increasing number of particles and potential quenching effect.

View Article and Find Full Text PDF

Independent dose verification with Monte Carlo (MC) simulations is an important feature of proton therapy quality assurance (QA). However, clinical integration of such tools often generates an additional and complex workload for medical physicists. The preparation of the necessary clinical inputs, such as the machine beam model, should therefore be automated.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates how small-gap plane-parallel ionization chambers respond to charge multiplication and proposes a method to accurately measure the product of recombination and charge multiplication correction factors (k).
  • Experiments were conducted with IBA PPC05 chambers at various voltages using proton beams and Cobalt-60, focusing on Jaffé plots to analyze the data and compare it against theoretical models.
  • Results show that while the charge multiplication effect is consistent across different beam qualities, it varies depending on the specific ionization chamber used, leading to recommendations for consistent operating voltages during calibration for accurate dosimetry.
View Article and Find Full Text PDF

Purpose: To evaluate the flat-panel detector quenching effect and clinical usability of a flat-panel based compact QA device for PBS daily constancy measurements.

Materials & Method: The QA device, named Sphinx Compact, is composed of a 20x20 cm flat-panel imager mounted on a portable frame with removable plastic modules for constancy checks of proton energy (100 MeV, 150 MeV, 200 MeV), Spread-Out-Bragg-Peak (SOBP) profile, and machine output. The potential quenching effect of the flat-panel detector was evaluated.

View Article and Find Full Text PDF

UHDpulse - Metrology for advanced radiotherapy using particle beams with ultra-high pulse dose rates is a recently started European Joint Research Project with the aim to develop and improve dosimetry standards for FLASH radiotherapy, very high energy electron (VHEE) radiotherapy and laser-driven medical accelerators. This paper gives a short overview about the current state of developments of radiotherapy with FLASH electrons and protons, very high energy electrons as well as laser-driven particles and the related challenges in dosimetry due to the ultra-high dose rate during the short radiation pulses. We summarize the objectives and plans of the UHDpulse project and present the 16 participating partners.

View Article and Find Full Text PDF

A new practical method to determine the ion recombination correction factor (k ) for plane-parallel and Farmer-type cylindrical chambers in particle beams is investigated. Experimental data were acquired in passively scattered and scanned particle beams and compared with theoretical models developed by Boag and/or Jaffé. The new method, named the three-voltage linear method (3VL-method), is simple and consists of determining the saturation current using the current measured at three voltages in a linear region and dividing it by the current at the operating voltage (V) (even if it is not in the linear region) to obtain k .

View Article and Find Full Text PDF

Purpose: In this work, the LET-dependence of the response of synthetic diamond detectors is investigated in different particle beams.

Method: Measurements were performed in three nonmodulated particle beams (proton, carbon, and oxygen). The response of five synthetic diamond detectors was compared to the response of a Markus or an Advanced Markus ionization chamber.

View Article and Find Full Text PDF

Based on international reference dosimetry protocols for light-ion beams, a correction factor (k ) has to be applied to the response of a plane-parallel ionisation chamber, to account for recombination of negative and positive charges in its air cavity before these charges can be collected on the electrodes. In this work, k for IBA PPC40 Roos-type chambers is investigated in four scanned light-ion beams (proton, helium, carbon and oxygen). To take into account the high dose-rates used with scanned beams and LET-values, experimental results are compared to a model combining two theories.

View Article and Find Full Text PDF

The aim of this work is to develop and adapt a formalism to determine absorbed dose to water from graphite calorimetry measurements in carbon-ion beams. Fluence correction factors, [Formula: see text], needed when using a graphite calorimeter to derive dose to water, were determined in a clinical high-energy carbon-ion beam. Measurements were performed in a 290 MeV/n carbon-ion beam with a field size of 11  ×  11 cm, without modulation.

View Article and Find Full Text PDF

This study was initiated following conclusions from earlier experimental work, performed in a low-energy carbon ion beam, indicating a significant LET dependence of the response of a PTW-60019 microDiamond detector. The purpose of this paper is to present a comparison between the response of the same PTW-60019 microDiamond detector and an IBA Roos-type ionization chamber as a function of depth in a 62MeV proton beam. Even though proton beams are considered as low linear energy transfer (LET) beams, the LET value increases slightly in the Bragg peak region.

View Article and Find Full Text PDF

In this work, we describe a new design of water calorimeter built to measure absorbed dose in non-standard radiation fields with reference depths in the range of 6-20 mm, and its initial testing in clinical electron and proton beams. A functioning calorimeter prototype with a total water equivalent thickness of less than 30 mm was constructed in-house and used to obtain measurements in clinical accelerator-based 6 MeV and 8 MeV electron beams and cyclotron-based 60 MeV monoenergetic and modulated proton beams. Corrections for the conductive heat transfer due to dose gradients and non-water materials was also accounted for using a commercial finite element method software package.

View Article and Find Full Text PDF

Purpose: In this work, ion recombination is studied as a function of energy and depth in carbon ion beams.

Methods: Measurements were performed in three different passively scattered carbon ion beams with energies of 62 MeV/n, 135 MeV/n, and 290 MeV/n using various types of plane-parallel ionization chambers. Experimental results were compared with two analytical models for initial recombination.

View Article and Find Full Text PDF

To investigate the linear energy transfer (LET) dependence of the response of a PTW-60019 Freiburg microDiamond detector, its response was compared to the response of a plane-parallel Markus chamber in a 62 MeV/n mono-energetic carbon ion beam. Results obtained with two different experimental setups are in agreement. As recommended by IAEA TRS-398, the response of the Markus chamber was corrected for temperature, pressure, polarity effects and ion recombination.

View Article and Find Full Text PDF

Developments in hadron therapy require efforts to improve the accuracy of the dose delivered to a target volume. Here, the determination of the absorbed dose under reference conditions was analysed. Based on the International Atomic Energy Agency TRS-398 code of practice, for hadron beams, the combined standard uncertainty on absorbed dose to water under reference conditions, derived from ionisation chambers, is too large.

View Article and Find Full Text PDF

Based on experiments and numerical simulations, a study is carried out pertaining to the conversion of dose-to-graphite to dose-to-water in a carbon ion beam. This conversion is needed to establish graphite calorimeters as primary standards of absorbed dose in these beams. It is governed by the water-to-graphite mass collision stopping power ratio and fluence correction factors, which depend on the particle fluence distributions in each of the two media.

View Article and Find Full Text PDF

The conversion of absorbed dose-to-graphite in a graphite phantom to absorbed dose-to-water in a water phantom is performed by water to graphite stopping power ratios. If, however, the charged particle fluence is not equal at equivalent depths in graphite and water, a fluence correction factor, kfl, is required as well. This is particularly relevant to the derivation of absorbed dose-to-water, the quantity of interest in radiotherapy, from a measurement of absorbed dose-to-graphite obtained with a graphite calorimeter.

View Article and Find Full Text PDF

Purpose: To evaluate the uncertainties and characteristics of radiochromic film-based dosimetry system using the EBT3 model Gafchromic(®) film in therapy photon, electron and proton beams.

Material And Methods: EBT3 films were read using an EPSON Expression 10000XL/PRO scanner. They were irradiated in five beams, an Elekta SL25 6 MV and 18 MV photon beam, an IBA 100 MeV 5 × 5 cm(2) proton beam delivered by pencil-beam scanning, a 60 MeV fixed proton beam and an Elekta SL25 6 MeV electron beam.

View Article and Find Full Text PDF

Purpose: The IAEA TRS-398 code of practice can be applied for the measurement of absorbed dose to water under reference conditions with an ionization chamber. For protons, the combined relative standard uncertainty on those measurements is less than 2% while for light-ion beams, it is considerably larger, i.e.

View Article and Find Full Text PDF

Purpose: To measure the calibration curves of EBT3 dosimetry films in photon and proton beams and to quantify the related uncertainties from one beam type to another.

Methods: EBT3 Gafchromic films have similar properties than EBT2 with a symmetric construction and a matte polyester substrate to prevent Newton's ring artefacts. Films from a same batch were exposed in three different beam qualities, an Elekta SL25 6 MV photon beam, a 100 MeV 5×5cm proton beam delivered by pencil-beam scanning dedicated system from IBA and a 60 MeV fixed proton beam (2.

View Article and Find Full Text PDF

Background: In radiation therapy, the principal dosimetric quantity of interest is the absorbed dose to water. Therefore, a dose conversion to dose to water is required for dose deposited by ion beams in other media. This is in particular necessary for dose measurements in plastic phantoms for increased positioning accuracy, graphite calorimetry being developed as a primary standard for dose to water dosimetry, but also for the comparison of dose distributions from Monte Carlo simulations with those of pencil beam algorithms.

View Article and Find Full Text PDF