Entropy (Basel)
September 2024
The processes involved in encoding and decoding signals in the human brain are a continually studied topic, as neuronal information flow involves complex nonlinear dynamics. This study examines awake human intracranial electroencephalography (iEEG) data from normal brain regions to explore how biological sex influences these dynamics. The iEEG data were analyzed using permutation entropy and statistical complexity in the time domain and power spectrum calculations in the frequency domain.
View Article and Find Full Text PDFHow the human brain processes information during different cognitive tasks is one of the greatest questions in contemporary neuroscience. Understanding the statistical properties of brain signals during specific activities is one promising way to address this question. Here we analyze freely available data from implanted electrocorticography (ECoG) in five human subjects during two different cognitive tasks in the light of information theory quantifiers ideas.
View Article and Find Full Text PDFWe use a multiscale symbolic approach to study the complex dynamics of temporal lobe refractory epilepsy employing high-resolution intracranial electroencephalogram (iEEG). We consider the basal and preictal phases and meticulously analyze the dynamics across frequency bands, focusing on high-frequency oscillations up to 240 Hz. Our results reveal significant periodicities and critical time scales within neural dynamics across frequency bands.
View Article and Find Full Text PDFThis paper analyzes the temporal evolution of streamflow for different rivers in Argentina based on information quantifiers such as statistical complexity and permutation entropy. The main objective is to identify key details of the dynamics of the analyzed time series to differentiate the degrees of randomness and chaos. The permutation entropy is used with the probability distribution of ordinal patterns and the Jensen-Shannon divergence to calculate the disequilibrium and the statistical complexity.
View Article and Find Full Text PDFEye tracking is an emerging technology with a wide spectrum of applications, including non-invasive neurocognitive diagnosis. An advantage of the use of eye trackers is in the improved assessment of indirect latent information about several aspects of the subjects' neurophysiology. The path to uncover and take advantage of the meaning and implications of this information, however, is still in its very early stages.
View Article and Find Full Text PDFIn this study, the Hénon map was analyzed using quantifiers from information theory in order to compare its dynamics to experimental data from brain regions known to exhibit chaotic behavior. The goal was to investigate the potential of the Hénon map as a model for replicating chaotic brain dynamics in the treatment of Parkinson's and epilepsy patients. The dynamic properties of the Hénon map were compared with data from the subthalamic nucleus, the medial frontal cortex, and a q-DG model of neuronal input-output with easy numerical implementation to simulate the local behavior of a population.
View Article and Find Full Text PDFWe investigated the influence of the construction of cascade dams and reservoirs on the predictability and complexity of the streamflow of the São Francisco River, Brazil, by using complexity entropy causality plane (CECP) in its standard and weighted form. We analyzed daily streamflow time series recorded in three fluviometric stations: São Francisco (upstream of cascade dams), Juazeiro (downstream of Sobradinho dam), and Pão de Açúcar station (downstream of Sobradinho and Xingó dams). By comparing the values of CECP information quantifiers (permutation entropy and statistical complexity) for the periods before and after the construction of Sobradinho (1979) and Xingó (1994) dams, we found that the reservoirs' operations changed the temporal variability of streamflow series toward the less predictable regime as indicated by higher entropy (lower complexity) values.
View Article and Find Full Text PDFThe aim of this study is to formulate a new methodology based upon informational tools to detect patients with cardiac arrhythmias. As it is known, sudden death is the consequence of a final arrhythmia, and here lies the relevance of the efforts aimed at the early detection of arrhythmias. The information content in the time series from an electrocardiogram (ECG) signal is conveyed in the form of a probability distribution function, to compute the permutation entropy proposed by Bandt and Pompe.
View Article and Find Full Text PDFIntracranial electroencephalography (iEEG) can directly record local field potentials (LFPs) from a large set of neurons in the vicinity of the electrode. To search for possible epileptic biomarkers and to determine the epileptogenic zone that gives rise to seizures, we investigated the dynamics of basal and preictal signals. For this purpose, we explored the dynamics of the recorded time series for different frequency bands considering high-frequency oscillations (HFO) up to 240 Hz.
View Article and Find Full Text PDFThe main motivation of this paper is to introduce the permutation Jensen-Shannon distance, a symbolic tool able to quantify the degree of similarity between two arbitrary time series. This quantifier results from the fusion of two concepts, the Jensen-Shannon divergence and the encoding scheme based on the sequential ordering of the elements in the data series. The versatility and robustness of this ordinal symbolic distance for characterizing and discriminating different dynamics are illustrated through several numerical and experimental applications.
View Article and Find Full Text PDFBackground: Previous work showed that elderly with excess in theta activity in their resting state electroencephalogram (EEG) are at higher risk of cognitive decline than those with a normal EEG. By using event-related potentials (ERP) during a counting Stroop task, our prior work showed that elderly with theta excess have a large P300 component compared with normal EEG group. This increased activity could be related to a higher EEG signal energy used during this task.
View Article and Find Full Text PDFThe use of chaotic systems in electronics, such as Pseudo-Random Number Generators (PRNGs), is very appealing. Among them, continuous-time ones are used less because, in addition to having strong temporal correlations, they require further computations to obtain the discrete solutions. Here, the time step and discretization method selection are first studied by conducting a detailed analysis of their effect on the systems' statistical and chaotic behavior.
View Article and Find Full Text PDFComplex systems are typically characterized as an intermediate situation between a complete regular structure and a random system. Brain signals can be studied as a striking example of such systems: cortical states can range from highly synchronous and ordered neuronal activity (with higher spiking variability) to desynchronized and disordered regimes (with lower spiking variability). It has been recently shown, by testing independent signatures of criticality, that a phase transition occurs in a cortical state of intermediate spiking variability.
View Article and Find Full Text PDFThe brain is a biophysical system subject to information flows that may be thought of as a many-body architecture with a spatiotemporal dynamics described by its neuronal structures. The oscillatory nature of brain activity allows these structures (nodes) to be described as a set of coupled oscillators forming a network where the node dynamics and that of the network topology can be studied. Quantifying its dynamics at various scales is an issue that claims to be explored for several brain activities, e.
View Article and Find Full Text PDFThe concept of entropy, an ever-growing physical magnitude that measured the degree of decay of order in a physical system, was introduced by Rudolf Clausius in 1865 through an elegant formulation of the second law of thermodynamics [...
View Article and Find Full Text PDFAutomatic monitoring of biodiversity by acoustic sensors has become an indispensable tool to assess environmental stress at an early stage. Due to the difficulty in recognizing the Amazon's high acoustic diversity and the large amounts of raw audio data recorded by the sensors, the labeling and manual inspection of this data is not feasible. Therefore, we propose an ecoacoustic index that allows us to quantify the complexity of an audio segment and correlate this measure with the biodiversity of the soundscape.
View Article and Find Full Text PDFUnderstanding the structure and the dynamics of networks is of paramount importance for many scientific fields that rely on network science. Complex network theory provides a variety of features that help in the evaluation of network behavior. However, such analysis can be confusing and misleading as there are many intrinsic properties for each network metric.
View Article and Find Full Text PDFTwo identical autonomous dynamical systems unidirectionally coupled in a sender-receiver configuration can exhibit anticipated synchronization (AS) if the receiver neuron also receives a delayed negative self-feedback. Recently, AS was shown to occur in a three-neuron motif with standard chemical synapses where the delayed inhibition was provided by an interneuron. Here, we show that a two-neuron model in the presence of an inhibitory autapse, which is a massive self-innervation present in the cortical architecture, may present AS.
View Article and Find Full Text PDFEntropy (Basel)
September 2018
The electroencephalogram (EEG) is an electrophysiological monitoring method that allows us to glimpse the electrical activity of the brain. Neural oscillations patterns are perhaps the best salient feature of EEG as they are rhythmic activities of the brain that can be generated by interactions across neurons. Large-scale oscillations can be measured by EEG as the different oscillation patterns reflected within the different frequency bands, and can provide us with new insights into brain functions.
View Article and Find Full Text PDFHorizontal Visibility Graphs (HVGs) are a recently developed method to construct networks from time series. The values of the time series are considered as the nodes of the network and are linked to each other if there is no larger value between them, such as they can "see" each other. The network properties reflect the nonlinear dynamics of the time series.
View Article and Find Full Text PDFElectroencephalography (EEG) signals depict the electrical activity that takes place at the surface of the brain and provide an important tool for understanding a variety of cognitive processes. The EEG is the product of synchronized activity of the brain, and variations in EEG oscillations patterns reflect the underlying changes in neuronal synchrony. Our aim is to characterize the complexity of the EEG rhythmic oscillations bands when the subjects perform a visuomotor or imagined cognitive tasks (imagined movement), providing a causal mapping of the dynamical rhythmic activities of the brain as a measure of attentional investment.
View Article and Find Full Text PDFIn the present work, an ischaemic process, mainly focused on the reperfusion stage, is studied using the informational causal entropy-complexity plane. Ischaemic wall behavior under this condition was analyzed through wall thickness and ventricular pressure variations, acquired during an obstructive flow maneuver performed on left coronary arteries of surgically instrumented animals. Basically, the induction of ischaemia depends on the temporary occlusion of left circumflex coronary artery (which supplies blood to the posterior left ventricular wall) that lasts for a few seconds.
View Article and Find Full Text PDFThis paper discusses the dynamics of intraday prices of 12 cryptocurrencies during the past months' boom and bust. The importance of this study lies in the extended coverage of the cryptoworld, accounting for more than 90% of the total daily turnover. By using the complexity-entropy causality plane, we could discriminate three different dynamics in the data set.
View Article and Find Full Text PDF