Atomic-scale understanding of important geochemical processes including sorption, dissolution, nucleation, and crystal growth is difficult to obtain from experimental measurements alone and would benefit from strong continuous progress in molecular simulation. To this end, we present a reactive neural network potential-based molecular dynamics approach to simulate the interaction of aqueous ions on mineral surfaces in contact with liquid water, taking Fe(II) on hematite(001) as a model system. We show that a single neural network potential predicts rate constants for water exchange for aqueous Fe(II) and for the exergonic chemisorption of aqueous Fe(II) on hematite(001) in good agreement with experimental observations.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
Here, we examine how radiation impacts the dissolution behavior of boehmite by subjecting dry nanoparticles of different sizes to Co γ radiation and subsequently analyzing their dissolution behavior in caustic solutions as a function of temperature. The measured kinetics show that irradiation with an amount 228.24 Mrad significantly slows the dissolution rate, particularly for smaller sizes at lower temperatures.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2024
The formation of mineral-associated organic matter (MAOM) is a key phenomenon that may explain the slow turnover rates of carbon in soil organic matter (SOM). Despite this, important details pertaining to the structure and dynamics of MAOM remain unknown. In the present study, we use replica-exchange molecular dynamics simulations to gain insight into the structure of MAOM on the surface of prototypical phyllosilicate clay and Fe-oxide minerals, montmorillonite and goethite, fine-grained minerals that strongly impact soil carbon dynamics in temperate and tropical regions, respectively.
View Article and Find Full Text PDFIncorporation of pollutants, e.g., heavy metals, or critical elements, e.
View Article and Find Full Text PDFThe interaction of condensed phase systems with external electric fields is of major importance in a myriad of processes in nature and technology, ranging from the field-directed motion of cells (galvanotaxis), to geochemistry and the formation of ice phases on planets, to field-directed chemical catalysis and energy storage and conversion systems including supercapacitors, batteries and solar cells. Molecular simulation in the presence of electric fields would give important atomistic insight into these processes but applications of the most accurate methods such as ab-initio molecular dynamics (AIMD) are limited in scope by their computational expense. Here we introduce Perturbed Neural Network Potential Molecular Dynamics (PNNP MD) to push back the accessible time and length scales of such simulations.
View Article and Find Full Text PDFAluminum hydroxide polymorphs are of widespread importance yet their kinetics of nucleation and growth remain beyond the reach of current models. Here we attempt to unveil the reaction processes underlying the polymorphs formation at high chemical potential. We examine their formation in-situ from supersaturated alkaline sodium aluminate solutions using deuteration and time-resolved neutron pair distribution function analyses, which indicate the formation of individual Al(OD) layers as an intermediate particle phase.
View Article and Find Full Text PDFInvestigating the structural evolution and phase transformation of iron oxides is crucial for gaining a deeper understanding of geological changes on diverse planets and preparing oxide materials suitable for industrial applications. In this study, in-situ heating techniques are employed in conjunction with transmission electron microscopy (TEM) observations and ex-situ characterization to thoroughly analyze the thermal solid-phase transformation of akaganéite 1D nanostructures with varying diameters. These findings offer compelling evidence for a size-dependent morphology evolution in akaganéite 1D nanostructures, which can be attributed to the transformation from akaganéite to maghemite (γ-FeO) and subsequent crystal growth.
View Article and Find Full Text PDFThe dynamics, orientational anisotropy, diffusivity, viscosity, and density were measured for concentrated lithium salt solutions, including lithium chloride (LiCl), lithium bromide (LiBr), lithium nitrite (LiNO), and lithium nitrate (LiNO), with methyl thiocyanate as an infrared vibrational probe molecule, using two-dimensional infrared spectroscopy (2D IR), nuclear magnetic resonance (NMR) spectroscopy, and viscometry. The 2D IR, NMR, and viscosity results show that LiNO exhibits longer correlation times, lower diffusivity, and nearly 4 times greater viscosity compared to those of the other lithium salt solutions of the same concentration, suggesting that nitrite anions may strongly facilitate structure formation via strengthening water-ion network interactions, directly impacting bulk solution properties at sufficiently high concentrations. Additionally, the LiNO and LiNO solutions show significantly weakened chemical interactions between the lithium cations and the methyl thiocyanate when compared with those of the lithium halide salts.
View Article and Find Full Text PDFThe generation and stabilization of gamma radiation-induced hydrogen atoms in gibbsite (Al(OH)) nanoplates is directly related to the nature of residual ions from synthetic precursors used, whether nitrates or chlorides. The concentration of hydrogen atoms trapped in the interstitial layers of gibbsite is lower and decays faster in comparison to boehmite (AlOOH), which could affect the management of these materials in radioactive waste.
View Article and Find Full Text PDFNanoparticle aggregates in solution controls surface reactivity and function. Complete dispersion often requires additive sorbents to impart a net repulsive interaction between particles. Facet engineering of nanocrystals offers an alternative approach to produce monodisperse suspensions simply based on facet-specific interaction with solvent molecules.
View Article and Find Full Text PDFMany important chemical processes involve reactivity and dynamics in complex solutions. Gaining a fundamental understanding of these reaction mechanisms is a challenging goal that requires advanced computational and experimental approaches. However, important techniques such as molecular simulation have limitations in terms of scales of time, length, and system complexity.
View Article and Find Full Text PDFEnviron Sci Technol
February 2024
Solar photoexcitation of chromophoric groups in dissolved organic matter (DOM), when coupled to photoreduction of ubiquitous Fe(III)-oxide nanoparticles, can significantly accelerate DOM degradation in near-surface terrestrial systems, but the mechanisms of these reactions remain elusive. We examined the photolysis of chromophoric soil DOM coated onto hematite nanoplatelets featuring (001) exposed facets using a combination of molecular spectroscopies and density functional theory (DFT) computations. Reactive oxygen species (ROS) probed by electron paramagnetic resonance (EPR) spectroscopy revealed that both singlet oxygen and superoxide are the predominant ROS responsible for DOM degradation.
View Article and Find Full Text PDFA detailed analysis is presented for the covalent character of the orbitals in the actinyls: UO, NpO, and PuO. Both the initial, or ground state, GS, configuration and the excited configurations where a 3d electron is excited into the open valence, nominally the 5f shell, are considered. The orbitals are determined as fully relativistic, four component Dirac-Coulomb Hartree-Fock solutions.
View Article and Find Full Text PDFUnderstanding the dissolution of boehmite in highly alkaline solutions is important to processing complex nuclear waste stored at the Hanford (WA) and Savannah River (SC) sites in the United States. Here, we report the adsorption of model carboxylates on boehmite nanoplates in alkaline solutions and their effects on boehmite dissolution in 3 M NaOH at 80 °C. Although expectedly lower than at circumneutral pH, adsorption of oxalate occurred at pH 13, with adsorption decreasing linearly to 3 M NaOH.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2024
Developing a better understanding of water ordering and hydroxylation at oxide mineral surfaces is important across a breath of application spaces. Recent vibrational sum frequency generation (vSFG) measurements on MgO(100) surfaces at ambient conditions showed that water dissociates and hydroxylates the surface yielding a non-hydrogen bonded hydroxyl species. Starting from previously determined water hydroxylation patterns on MgO(100), we performed thermodynamic calculations and vibrational analysis to compare with the vSFG observations.
View Article and Find Full Text PDFPredicting the behavior of oxyanions in radioactive waste stored at the Department of Energy legacy nuclear sites requires the development of novel analytical methods. This work demonstrates N pulsed field gradient nuclear magnetic resonance spectroscopy to quantify the diffusivity of nitrite. Experimental results, supported by molecular dynamics simulations, indicate that the diffusivity of free hydrated nitrite exceeds that of free hydrated sodium despite the greater hydrodynamic radius of nitrite.
View Article and Find Full Text PDFTransformation of nanocrystalline ferrihydrite to more stable microcrystalline Fe(III) oxides is rapidly accelerated under reducing conditions with aqueous Fe(II) present. While the major steps of Fe(II)-catalyzed ferrihydrite transformation are known, processes in the initial phase that lead to nucleation and the growth of product minerals remain unclear. To track ferrihydrite-Fe(II) interactions during this initial phase, we used Fe isotopes, Mössbauer spectroscopy, and extractions to monitor the structural, magnetic, and isotope composition changes of ferrihydrite within ∼30 min of Fe(II) exposure.
View Article and Find Full Text PDFCrystal dissolution, which is a fundamental process in both natural and technological settings, has been predominately viewed as a process of ion-by-ion detachment into a surrounding solvent. Here we report a mechanism of dissolution by particle detachment (DPD) that dominates in mesocrystals formed via crystallization by particle attachment (CPA). Using liquid phase electron microscopy to directly observe dissolution of hematite crystals - both compact rhombohedra and mesocrystals of coaligned nanoparticles - we find that the mesocrystals evolve into branched structures, which disintegrate as individual sub-particles detach.
View Article and Find Full Text PDFPredicting nanoparticle aggregation and attachment phenomena requires a rigorous understanding of the interplay among crystal structure, particle morphology, surface chemistry, solution conditions, and interparticle forces, yet no comprehensive picture exists. We used an integrated suite of experimental, theoretical, and simulation methods to resolve the effect of solution pH on the aggregation of boehmite nanoplatelets, a case study with important implications for the environmental management of legacy nuclear waste. Real-time observations showed that the particles attach preferentially along the (010) planes at pH 8.
View Article and Find Full Text PDFReactive force fields (RFFs) are an expedient approach to sample chemical reaction paths in complex systems, relative to density functional theory. However, there is continued need to improve efficiencies, specifically in systems that have slow transverse degrees of freedom, as in highly viscous and superconcentrated solutions. Here, we present an RFF that is differentiated from current models (e.
View Article and Find Full Text PDFUltraviolet (UV) photolysis of nitrite ions (NO2-) in aqueous solutions produces a suite of radicals, viz., NO·, O-, ·OH, and ·NO2. The O- and NO· radicals are initially formed from the dissociation of photoexcited NO2-.
View Article and Find Full Text PDFIron-based redox-active minerals are ubiquitous in soils, sediments, and aquatic systems. Their dissolution is of great importance for microbial impacts on carbon cycling and the biogeochemistry of the lithosphere and hydrosphere. Despite its widespread significance and extensive prior study, the atomic-to-nanoscale mechanisms of dissolution remain poorly understood, particularly the interplay between acidic and reductive processes.
View Article and Find Full Text PDFInterfacial reactions drive all elemental cycling on Earth and play pivotal roles in human activities such as agriculture, water purification, energy production and storage, environmental contaminant remediation, and nuclear waste repository management. The onset of the 21st century marked the beginning of a more detailed understanding of mineral aqueous interfaces enabled by advances in techniques that use tunable high-flux focused ultrafast laser and X-ray sources to provide near-atomic measurement resolution, as well as by nanofabrication approaches that enable transmission electron microscopy in a liquid cell. This leap into atomic- and nanometer-scale measurements has uncovered scale-dependent phenomena whose reaction thermodynamics, kinetics, and pathways deviate from previous observations made on larger systems.
View Article and Find Full Text PDFThe calamitous impacts of unabated carbon emission from fossil-fuel-burning energy infrastructure call for accelerated development of large-scale CO capture, utilization and storage technologies that are underpinned by a fundamental understanding of the chemical processes at a molecular level. In the subsurface, rocks rich in divalent metals can react with CO, permanently sequestering it in the form of stable metal carbonate minerals, with the CO-HO composition of the post-injection pore fluid acting as a primary control variable. In this Review, we discuss mechanistic reaction pathways for aqueous-mediated carbonation with carbon mineralization occurring in nanoscale adsorbed water films.
View Article and Find Full Text PDF