Publications by authors named "Rossnagel K"

Charge-density waves (CDWs) are correlated states of matter, in which the electronic density is modulated periodically due to electronic and phononic interactions. Often, CDW phases coexist with other correlated states, such as superconductivity, spin-density waves, or Mott insulators. Controlling CDW phases may, therefore, enable the manipulation of the energy landscape of these interacting states.

View Article and Find Full Text PDF

Magnetic adatoms on superconductors give rise to Yu-Shiba-Rusinov (YSR) states that hold considerable interest for the design of topological superconductivity. Here, we show that YSR states are also an ideal platform to engineer structures with intricate wave function symmetries. We assemble structures of iron atoms on the quasi-two-dimensional superconductor 2-NbSe.

View Article and Find Full Text PDF

Understanding the mechanisms underlying a stable polarization at the surface of ferroelectric thin films is of particular importance both from a fundamental point of view and to achieve control of the surface polarization itself. In this study, we demonstrate that the X-ray standing wave technique allows the surface polarization profile of a ferroelectric thin film, as opposed to the average film polarity, to be probed directly. The X-ray standing wave technique provides the average Ti and Ba atomic positions, along the out-of-plane direction, near the surface of three differently strained [Formula: see text] thin films.

View Article and Find Full Text PDF

Structural transformations in strongly correlated materials promise efficient and fast control of materials' properties via electrical or optical stimulation. The desired functionality of devices operating based on phase transitions, however, will also be influenced by nanoscale heterogeneity. Experimentally characterizing the relationship between microstructure and phase switching remains challenging, as nanometer resolution and high sensitivity to subtle structural modifications are required.

View Article and Find Full Text PDF

The quest for intrinsically ferromagnetic topological materials is a focal point in the study of topological phases of matter, as intrinsic ferromagnetism plays a vital role in realizing exotic properties such as the anomalous Hall effect (AHE) in quasi-two-dimensional materials, and this stands out as one of the most pressing concerns within the field. Here, we investigate a novel higher order member of the MnSb2nTe3n+1family, MnSbTe, for the first time combining magnetotransport and angle-resolved photoemission spectroscopy (ARPES) measurements. Our magnetic susceptibility experiments identify ferromagnetic transitions at temperature= 18.

View Article and Find Full Text PDF

The emergence of correlated phenomena arising from the combination of 1T and 1H van der Waals layers is the focus of intense research. Here, we synthesize a self-stacked 6R phase in NbSeTe, showing perfect alternating 1T and 1H layers that grow coherently along the c-direction, as revealed by scanning transmission electron microscopy. Angle-resolved photoemission spectroscopy shows a mixed contribution of the trigonal and octahedral Nb bands to the Fermi level.

View Article and Find Full Text PDF

Chiral crystals and molecules were recently predicted to form an intriguing platform for unconventional orbital physics. Here, we report the observation of chirality-driven orbital textures in the bulk electronic structure of CoSi, a prototype member of the cubic B20 family of chiral crystals. Using circular dichroism in soft x-ray angle-resolved photoemission, we demonstrate the formation of a bulk orbital-angular-momentum texture and monopolelike orbital-momentum locking that depends on crystal handedness.

View Article and Find Full Text PDF

Altermagnets are an emerging elementary class of collinear magnets. Unlike ferromagnets, their distinct crystal symmetries inhibit magnetization while, unlike antiferromagnets, they promote strong spin polarization in the band structure. The corresponding unconventional mechanism of time-reversal symmetry breaking without magnetization in the electronic spectra has been regarded as a primary signature of altermagnetism but has not been experimentally visualized to date.

View Article and Find Full Text PDF

Identifying the microscopic nature of non-equilibrium energy transfer mechanisms among electronic, spin, and lattice degrees of freedom is central to understanding ultrafast phenomena such as manipulating magnetism on the femtosecond timescale. Here, we use time- and angle-resolved photoemission spectroscopy to go beyond the often-used ensemble-averaged view of non-equilibrium dynamics in terms of quasiparticle temperature evolutions. We show for ferromagnetic Ni that the non-equilibrium electron and spin dynamics display pronounced variations with electron momentum, whereas the magnetic exchange interaction remains isotropic.

View Article and Find Full Text PDF

Objective: This study aimed to determine if there is an increased risk of incident cardiovascular diseases (CVD) resulting from cumulative night shift work in the German population-based Gutenberg Health Study (GHS).

Methods: We examined working participants of the GHS at baseline and after five years. Cumulative night shift work in the 10 years before baseline was assessed and categorized as low (1-220 nights ≙ up to 1 year), middle (221-660 nights ≙ 1-3 years), and high (>660 nights ≙ more than 3 years) night shift exposure.

View Article and Find Full Text PDF

Research on charge-density-wave (CDW) ordered transition-metal dichalcogenides continues to unravel new states of quantum matter correlated to the intertwined lattice and electronic degrees of freedom. Here, we report an inelastic x-ray scattering investigation of the lattice dynamics of the canonical CDW compound 2H-TaSe complemented by angle-resolved photoemission spectroscopy and density functional perturbation theory. Our results rule out the formation of a central-peak without full phonon softening for the CDW transition in 2H-TaSe and provide evidence for a novel precursor region above the CDW transition temperature T, which is characterized by an overdamped phonon mode and not detectable in our photoemission experiments.

View Article and Find Full Text PDF

Free-electron lasers provide bright, ultrashort, and monochromatic x-ray pulses, enabling novel spectroscopic measurements not only with femtosecond temporal resolution: The high fluence of their x-ray pulses can also easily enter the regime of the non-linear x-ray-matter interaction. Entering this regime necessitates a rigorous analysis and reliable prediction of the relevant non-linear processes for future experiment designs. Here, we show non-linear changes in the -edge absorption of metallic nickel thin films, measured with fluences up to 60 J/cm.

View Article and Find Full Text PDF

The origin of the pseudogap in many strongly correlated materials has been a longstanding puzzle. Here, we present experimental evidence that many-body interactions among small Holstein polarons, i.e.

View Article and Find Full Text PDF

We propose SnBiTeto be a novel topological quantum material exhibiting temperature () mediated transitions between rich electronic phases. Our combined theoretical and experimental results suggest that SnBiTegoes from a low-semimetallic phase to a high-(room temperature) insulating phase via an intermediate metallic phase. Single crystals of SnBiTeare characterized by various experimental probes including synchrotron based x-ray diffraction, magnetoresistance, Hall effect, Seebeck coefficient and magnetization.

View Article and Find Full Text PDF

The tunability of materials properties by light promises a wealth of future applications in energy conversion and information technology. Strongly correlated materials such as transition metal dichalcogenides offer optical control of electronic phases, charge ordering and interlayer correlations by photodoping. Here, we find the emergence of a transient hexatic state during the laser-induced transformation between two charge-density wave phases in a thin-film transition metal dichalcogenide, 1T-type tantalum disulfide (1T-TaS).

View Article and Find Full Text PDF

The magnetic properties of transition-metal ions are generally described by the atomic spins of the ions and their exchange coupling. The orbital moment, usually largely quenched due the ligand field, is then seen as a perturbation. In such a scheme, = 1/2 ions are predicted to be isotropic.

View Article and Find Full Text PDF

X-ray photoelectron diffraction (XPD) is a powerful technique that yields detailed structural information of solids and thin films that complements electronic structure measurements. Among the strongholds of XPD we can identify dopant sites, track structural phase transitions, and perform holographic reconstruction. High-resolution imaging of k-distributions (momentum microscopy) presents a new approach to core-level photoemission.

View Article and Find Full Text PDF

Femtosecond transient soft X-ray absorption spectroscopy (XAS) is a very promising technique that can be employed at X-ray free-electron lasers (FELs) to investigate out-of-equilibrium dynamics for material and energy research. Here, a dedicated setup for soft X-rays available at the Spectroscopy and Coherent Scattering (SCS) instrument at the European X-ray Free-Electron Laser (European XFEL) is presented. It consists of a beam-splitting off-axis zone plate (BOZ) used in transmission to create three copies of the incoming beam, which are used to measure the transmitted intensity through the excited and unexcited sample, as well as to monitor the incoming intensity.

View Article and Find Full Text PDF

Methods to probe and understand the dynamic response of materials following impulsive excitation are important for many fields, from materials and energy sciences to chemical and neuroscience. To design more efficient nano, energy, and quantum devices, new methods are needed to uncover the dominant excitations and reaction pathways. In this work, we implement a newly-developed superlet transform-a super-resolution time-frequency analytical method-to analyze and extract phonon dynamics in a laser-excited two-dimensional (2D) quantum material.

View Article and Find Full Text PDF

A 790-nm-driven high-harmonic generation source with a repetition rate of 6 kHz is combined with a toroidal-grating monochromator and a high-detection-efficiency photoelectron time-of-flight momentum microscope to enable time- and momentum-resolved photoemission spectroscopy over a spectral range of 23.6-45.5 eV with sub-100 fs time resolution.

View Article and Find Full Text PDF

Materials with insulator-metal transitions promise advanced functionalities for future information technology. Patterning on the microscale is key for miniaturized functional devices, but material properties may vary spatially across microstructures. Characterization of these miniaturized devices requires electronic structure probes with sufficient spatial resolution to understand the influence of structure size and shape on functional properties.

View Article and Find Full Text PDF

Magnetic adatom chains on surfaces constitute fascinating quantum spin systems. Superconducting substrates suppress interactions with bulk electronic excitations but couple the adatom spins to a chain of subgap Yu-Shiba-Rusinov (YSR) quasiparticles. Using a scanning tunneling microscope, we investigate such correlated spin-fermion systems by constructing Fe chains adatom by adatom on superconducting NbSe.

View Article and Find Full Text PDF

Charge density wave (CDW) order is an emergent quantum phase that is characterized by periodic lattice distortion and charge density modulation, often present near superconducting transitions. Here, we uncover a novel inverted CDW state by using a femtosecond laser to coherently reverse the star-of-David lattice distortion in 1-TaSe. We track the signature of this novel CDW state using time- and angle-resolved photoemission spectroscopy and the time-dependent density functional theory to validate that it is associated with a unique lattice and charge arrangement never before realized.

View Article and Find Full Text PDF