Purpose: To study if adaptive image receive (AIR) receiver coil elements can be configured into a 2D array with high (>45% by diameter) element-to-element overlap, allowing improved SNR at depth (0.7-1.5× element diameter) versus conventional (20%) overlap.
View Article and Find Full Text PDFBackground MR elastography (MRE) has been shown to have excellent performance for noninvasive liver fibrosis staging. However, there is limited knowledge regarding the precision and test-retest repeatability of stiffness measurement with MRE in the multicenter setting. Purpose To determine the precision and test-retest repeatability of stiffness measurement with MRE across multiple centers using the same phantoms.
View Article and Find Full Text PDFPurpose: Development of a technique for measuring the mechanical properties of zygomaticus major (ZM) may aid advances in clinical treatments for correcting abnormal oral posture. The objective of this work was to demonstrate the feasibility of measuring the stiffness of ZM using an MR elastography technique that incorporates a custom local driver and a phase-gradient (PG) inversion.
Methods: 2D MRE investigations were performed for 3 healthy subjects using a vibration frequency of 90 Hz to test the prediction that the stiffness of ZM would be greater in the mouth-open compared to the mouth-closed position.
Purpose: Abnormal adherence at functional myofascial interfaces is hypothesized as an important phenomenon in myofascial pain syndrome. This study aimed to investigate the feasibility of MR elastography (MRE)-based slip interface imaging (SII) to visualize and assess myofascial mobility in healthy volunteers.
Methods: SII was used to assess local shear strain at functional myofascial interfaces in the flexor digitorum profundus (FDP) and thighs.
Purpose: To demonstrate a novel MR elastography (MRE) technique, termed here wavelet MRE. With this technique, broadband motion sensitivity is achievable. Moreover, the true tissue displacement can be reconstructed with a simple inverse transform.
View Article and Find Full Text PDFTo evaluate natural organic matter (NOM) processing impacts on preformed monochloramine (PM) reactivity and as a first step in creating concentrated disinfection byproduct (DBP) mixtures from PM, a rational methodology was developed to proportionally scale PM NOM-related demand in unconcentrated source waters to waters with concentrated NOM. Multiple NOM preparations were evaluated, including a liquid concentrate and reconstituted lyophilized solid material. Published kinetic models were evaluated and used to develop a focused reaction scheme (FRS) that was relatively simple to implement and focused on monochloramine loss, including considerations for inorganic chloramine stability (i.
View Article and Find Full Text PDFBackground: Invasive cardiac catheterization (CC) temporarily increases pain, discomfort, and anxiety. Procedural sedation is deployed to mitigate these symptoms, though practice varies. Research evaluating peri-procedural patient-reported outcomes is lacking.
View Article and Find Full Text PDFPurpose: To evaluate the performance of a new, highly flexible radiofrequency (RF) coil system for imaging patients undergoing MR simulation.
Methods: Volumetric phantom and in vivo images were acquired with a commercially available and prototype RF coil set. Phantom evaluation was performed using a silicone-filled humanoid phantom of the head and shoulders.
Objective: The purpose of this study was to compare the frequency and types of anogenital trauma in rape victims as a function of the time interval between the assault and recent (72 h) consensual sexual intercourse.
Methods: This retrospective cohort trial evaluated consecutive female patients, age 13 years or older, presenting to a community-based nurse examiner clinic (NEC) during a 5-year study period. The NEC facility is staffed by forensic nurses trained to perform medical-legal examinations using colposcopy with nuclear staining and digital imaging.
Purpose: To demonstrate the feasibility and diagnostic value of high-frequency magnetic resonance elastography (MRE) for evaluation of prostatic disease in patients with lower urinary tract symptoms (LUTS).
Methods: 41 patients who underwent preoperative prostate MRI and MRE with a modified driver were enrolled retrospectively from May 2016 to September 2021. All were included in the assessment of MRE image quality, using a qualitative visual inspection and a quantitative confidence map.
Background: Preoperative evaluation of aggressiveness, including tumor histological subtype, grade of differentiation, Federation International of Gynecology and Obstetrics (FIGO) stage, and depth of myometrial invasion, is significant for treatment planning and prognosis in endometrial carcinoma (EC). The purpose of this study was to evaluate whether three-dimensional (3D) magnetic resonance elastography (MRE) can help predict the aggressiveness of EC.
Methods: From August 2015 to January 2019, 82 consecutive patients with suspected uterine tumors underwent pelvic MRI and MRE scans, and 15 patients with confirmed EC after surgical resection were enrolled.
BRAF-targeted therapies including vemurafenib (Zelboraf) induce dramatic cancer remission; however, drug resistance commonly emerges. The purpose was to characterize a naturally occurring canine cancer model harboring complex features of human cancer, to complement experimental models to improve BRAF-targeted therapy. A phase I/II clinical trial of vemurafenib was performed in pet dogs with naturally occurring invasive urothelial carcinoma (InvUC) harboring the canine homologue of human The safety, MTD, pharmacokinetics, and antitumor activity were determined.
View Article and Find Full Text PDFPurpose: To assess the relationship between MRE stiffness of prostate cancer (PCa) and the extent of lymph node metastasis (LNM) in patients with PCa undergoing radical prostatectomy (RP) and extended pelvic lymph node dissection (ePLND).
Materials: The local institutional review board approved this retrospective study. We retrospectively analyzed 49 patients, who had undergone MRE, mpMRI and pelvic MRI on a 3.
Purpose: A 7T magnetic resonance thermometry (MRT) technique was developed to validate the conversion factor between the system-measured transmitted radiofrequency (RF) power into a home-built RF wrist coil with the system-predicted SAR value. The conversion factor for a new RF coil developed for ultra high magnetic field MRI systems is used to ensure that regulatory limits on RF energy deposition in tissue, specifically the local 10g-averaged specific absorption rate (SAR ), are not exceeded. MRT can be used to validate this factor by ensuring that MRT-measured SAR values do not exceed those predicted by the system.
View Article and Find Full Text PDFThe Adaptive Image Receive (AIR) radiofrequency coil is an emergent technology that is lightweight and flexible and exhibits electrical characteristics that overcome many of the limitations of traditional rigid coil designs. The purpose of this study was to apply the AIR coil for whole-brain imaging and compare the performance of a prototype AIR coil array with the performance of conventional head coils. A phantom and 15 healthy adult participants were imaged.
View Article and Find Full Text PDFPurpose: The purpose is to develop a retrospective correction for subtle slice-to-slice positional inconsistencies that can occur when overlapped slices are acquired for super resolution in T -weighted spin-echo multislice imaging.
Methods: Spin-echo acquisition of overlapped slices is typically done using multiple passes. After the passes are assembled into the final slice set, consecutive slices are correlated due to their overlap.
Purpose: To develop a novel magnetic resonance elastography (MRE) acquisition using a hybrid radial EPI readout scheme (TURBINE), and to demonstrate its feasibility to obtain wave images and stiffness maps in a phantom and in vivo brain.
Method: The proposed 3D TURBINE-MRE is based on a spoiled gradient-echo MRE sequence with the EPI readout radially rotating about the phase-encoding axis to sample a full 3D k-space. A polyvinyl chloride phantom and 6 volunteers were scanned on a compact 3T GE scanner with a 32-channel head coil at 80 Hz and 60 Hz external vibration, respectively.
Catheter Cardiovasc Interv
June 2020
Objectives: Patient centeredness is an essential component of high-quality care, yet little is known regarding the patient experience during procedures performed in the cardiac catheterization lab.
Background: Available literature focuses on the safe delivery of sedation, but does not address patient-reported satisfaction or comfort. Further delineation of how procedural factors impact the patient experience is needed.
Magnetic resonance elastography (MRE) is increasingly being applied to thin or small structures in which wave propagation is dominated by waveguide effects, which can substantially bias stiffness results with common processing approaches. The purpose of this work was to investigate the importance of such biases and artifacts on MRE inversion results in: (i) various idealized 2D and 3D geometries with one or more dimensions that are small relative to the shear wavelength; and (ii) a realistic cardiac geometry. Finite element models were created using simple 2D geometries as well as a simplified and a realistic 3D cardiac geometry, and simulated displacements acquired by MRE from harmonic excitations from 60 to 220 Hz across a range of frequencies.
View Article and Find Full Text PDFA 2-year-old male, intact Boxer was referred for chronic diarrhea, hyporexia, labored breathing, weakness and elevated creatine kinase, and alanine aminotransferase activities. Initial examination and diagnostics revealed a peripheral nervous system neurolocalization, atrial premature complexes, and generalized megaesophagus. Progressive worsening of the dog's condition was noted after 36 h; the dog developed aspiration pneumonia, was febrile and oxygen dependent.
View Article and Find Full Text PDFPurpose: To implement a reduced field of view (rFOV) technique for cardiac MR elastography (MRE) and to demonstrate the improvement in image quality of both magnitude images and post-processed MRE stiffness maps compared to the conventional full field of view (full-FOV) acquisition.
Methods: With Institutional Review Board approval, 17 healthy volunteers underwent both full-FOV and rFOV cardiac MRE scans using 140-Hz vibrations. Two cardiac radiologists blindly compared the magnitude images and stiffness maps and graded the images based on several image quality attributes using a 5-point ordinal scale.
Purpose: The stiffness of a myocardial infarct affects the left ventricular pump function and remodeling. Magnetic resonance elastography (MRE) is a noninvasive imaging technique for measuring soft-tissue stiffness in vivo. The purpose of this study was to investigate the feasibility of assessing in vivo regional myocardial stiffness with high-frequency 3D cardiac MRE in a porcine model of myocardial infarction, and compare the results with ex vivo uniaxial tensile testing.
View Article and Find Full Text PDF