A total of 60 Salmonella enterica serovar (ser.) Enteritidis isolates, 28 from poultry houses and 32 from clinical samples, were isolated during 2010. These isolates were subjected to testing and analyzed for antibiotic resistance, virulence genes, plasmids and plasmid replicon types.
View Article and Find Full Text PDFSalmonella enterica serovar Enteritidis is a leading cause of salmonellosis throughout the world and is most commonly associated with the consumption of contaminated poultry and egg products. Salmonella Enteritidis has enhanced ability to colonize and persist in extraintestinal sites within chickens. In this study, 54 Salmonella Enteritidis isolates from human patients (n=28), retail chicken (n=9), broiler farms (n=9), and egg production facilities (n=8) were characterized by antimicrobial susceptibility testing, plasmid analysis, genetic relatedness using XbaI and AvrII pulsed-field gel electrophoresis (PFGE), and the presence of putative virulence genes.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2013
The aim of this longitudinal study was to determine and compare the prevalences and genotypic profiles of antimicrobial-resistant (AR) Salmonella isolates from pigs reared in antimicrobial-free (ABF) and conventional production systems at farm, at slaughter, and in their environment. We collected 2,889 pig fecal and 2,122 environmental (feed, water, soil, lagoon, truck, and floor swabs) samples from 10 conventional and eight ABF longitudinal cohorts at different stages of production (farrowing, nursery, finishing) and slaughter (postevisceration, postchill, and mesenteric lymph nodes [MLN]). In addition, we collected 1,363 carcass swabs and 205 lairage and truck samples at slaughter.
View Article and Find Full Text PDFA total of 50 Salmonella enterica serovar Javiana isolates, isolated from food, environmental and clinical samples, were analyzed for antibiotic resistance, presence of virulence genes, plasmids and plasmid replicon types. To assess the genetic diversity, pulsed-field gel electrophoresis (PFGE) fingerprinting and plasmid profiles were performed. All of the isolates were sensitive to chloramphenicol, nalidixic acid, and sulfisoxazole, and four isolates showed intermediate resistance to gentamicin or kanamycin.
View Article and Find Full Text PDFA total of 39 Salmonella enterica serovar Saintpaul strains from imported seafood, pepper and from environmental and clinical samples were analyzed for the presence of virulence genes, antibiotic resistance, plasmid and plasmid replicon types. Pulsed-field gel electrophoresis (PFGE) fingerprinting using the XbaI restriction enzyme and plasmid profiling were performed to assess genetic diversity. None of the isolates showed resistance to ampicillin, chloramphenicol, gentamicin, kanamycin, streptomycin, sulfisoxazole, and tetracycline.
View Article and Find Full Text PDFSeventy-eight Salmonella enterica serovar Heidelberg isolates from humans were tested for antimicrobial susceptibility, resistance genes, and plasmids and genotyped by pulsed-field gel electrophoresis (PFGE). Most (88%) contained plasmids, and 47% were resistant to antimicrobials. The overall results were compared to those of previous S.
View Article and Find Full Text PDFObjectives: Salmonella serotype Newport and Salmonella serotype Typhimurium are the most commonly identified serotypes of Salmonella causing human disease in the state of Arkansas. The purpose of our study was to compare the results of standard and molecular epidemiologic methods of investigating human salmonellosis cases due to Salmonella serotype Newport and Salmonella serotype Typhimurium.
Methods: All isolates of Salmonella serotype Newport and Salmonella serotype Typhimurium collected and submitted to the Arkansas Department of Health between July 1, 1997 and June 30, 1998 were gathered and underwent pulsed-field gel electrophoresis (PFGE).
Campylobacter spp. are a major contaminant of poultry. Eating undercooked chicken and handling raw poultry have been identified as risk factors for campylobacteriosis in humans.
View Article and Find Full Text PDF