Background And Aims: There is a paucity of data concerning the influence of lipid-lowering therapy on cardiovascular (CV) outcomes in patients with homozygous familial hypercholesterolaemia (FH). To redress this a retrospective analysis was undertaken of the demographic features, lipid levels, low density lipoprotein receptor and Autosomal Recessive Hypercholesterolaemia gene mutations, CV outcomes and vital status of 44 FH homozygotes referred to a single centre in the UK between 1964 and 2014.
Methods: Data were obtained from past publications, case records and death certificates.
Genomic inversions are an increasingly recognized source of genetic variation. However, a lack of reliable high-throughput genotyping assays for these structures has precluded a full understanding of an inversion's phylogenetic, phenotypic, and population genetic properties. We characterize these properties for one of the largest polymorphic inversions in man (the ∼4.
View Article and Find Full Text PDFJ Vasc Interv Radiol
October 2008
Purpose: To compare the aortic plaque burden in patients with heterozygous familial hypercholesterolemia on long-term statin treatment with that of matched control subjects.
Materials And Methods: The authors studied 11 heterozygous, nonsmoking, nondiabetic, and nonhypertensive patients with familial hypercholesterolemia (mean age, 44 years +/- 10) who had been receiving cholesterol-lowering management for a mean of 12 years +/- 5, including 8.25 years +/- 4.
Research ethics committee approval was obtained for this study, and written informed consent was obtained from all participants. The purpose was to prospectively evaluate the feasibility of breath-hold multiecho in- and out-of-phase magnetic resonance (MR) imaging for simultaneous lipid quantification and T2* measurement. A spoiled gradient-echo sequence with seven echo times alternately in phase and out of phase was used at 3.
View Article and Find Full Text PDFThis study was designed to assess whether breath-hold cardiac multiecho imaging at 3.0 T is achievable without significant image artefacts and if fat/water phase interference modulates the exponential T2* signal decay. Twelve healthy volunteers (mean age 39) were imaged on a Philips Intera 3.
View Article and Find Full Text PDFObjectives: This study's aim was to examine whether treatment with pioglitazone, added to conventional lipid-lowering therapy, would improve myocardial glucose utilization (MGU) and blood flow (MBF) in nondiabetic patients with familial combined hyperlipidemia (FCHL).
Background: Thiazolidinediones were found to improve insulin sensitivity and MGU in type 2 diabetes and MBF in Mexican Americans with insulin resistance. Familial combined hyperlipidemia is a complex genetic disorder conferring a high risk of premature coronary artery disease, characterized by high serum cholesterol and/or triglyceride, low high-density lipoprotein (HDL) cholesterol, and insulin resistance.
Introduction: Homozygous familial hypercholesterolemia (FH) is considered a model disease for excessive plasma cholesterol levels. Patients with untreated homozygous FH have a markedly increased risk for premature atherosclerosis. The frequency and extent of ischemic brain damage detectable by high-field magnetic resonance imaging (MRI) after long-term intensive treatment are unknown.
View Article and Find Full Text PDFFamilial combined hyperlipidaemia (FCHL) is a complex genetic disorder conferring high risk of premature atherosclerosis, characterized by high cholesterol and/or triglyceride, low high density lipoprotein (HDL) cholesterol and insulin resistance. We examined whether pioglitazone, added to conventional lipid-lowering therapy, would favourably affect metabolic parameters and alter body fat content. We undertook a randomized, double blind, placebo-controlled study in 22 male patients with FCHL treated with pioglitazone or matching placebo 30 mg daily for 4 weeks, increasing to 45 mg for 12 weeks.
View Article and Find Full Text PDFOur aim was to assess the predictive value of a measurement of intima-medial layer (IML) reflectivity in the differentiation of pathological from physiological increases in intima-medial thickness (IMT). Both common carotid arteries (CCA) of familial hypercholesterolemia (FH) patients and age- and sex-matched controls (no cardiovascular risk factors) were imaged using a 10- to 15-MHz linear array transducer (n = 30). Images of the CCA far wall were analyzed in the IMT "plug-in" of "HDI Lab.
View Article and Find Full Text PDFNat Clin Pract Cardiovasc Med
April 2007
Familial hypercholesterolemia (FH) is characterized by raised serum LDL cholesterol levels, which result in excess deposition of cholesterol in tissues, leading to accelerated atherosclerosis and increased risk of premature coronary heart disease. FH results from defects in the hepatic uptake and degradation of LDL via the LDL-receptor pathway, commonly caused by a loss-of-function mutation in the LDL-receptor gene (LDLR) or by a mutation in the gene encoding apolipoprotein B (APOB). FH is primarily an autosomal dominant disorder with a gene-dosage effect.
View Article and Find Full Text PDFFamilial hypercholesterolaemia (FH) results from defective catabolism of low density lipoproteins (LDL), leading to premature atherosclerosis and early coronary heart disease. It is commonly caused by mutations in LDLR, encoding the LDL receptor that mediates hepatic uptake of LDL, or in APOB, encoding its major ligand. More rarely, dominant mutations in PCSK9 or recessive mutations in LDLRAP1 (ARH) cause FH, gene defects that also affect the LDL-receptor pathway.
View Article and Find Full Text PDFNat Clin Pract Cardiovasc Med
May 2005
Insulin-resistance syndromes are of pandemic proportions; 150 million people worldwide and an estimated 43 million people in the US are currently affected by type 2 diabetes mellitus or metabolic syndrome respectively. Treatment of heart disease in the context of type 2 diabetes requires multifactorial risk-factor management, including lifestyle modification and drug treatment for comorbidities. Management of coronary risk extends beyond simple cholesterol lowering.
View Article and Find Full Text PDFObjective: Analysis of long-term (30 years) clinical history and response to treatment of 13 patients with the D374Y mutation of PCSK9 (PCSK9 patients) from 4 unrelated white British families compared with 36 white British patients with heterozygous familial hypercholesterolemia attributable to 3 specific mutations in the low-density lipoprotein (LDL) receptor gene (LDLR) known to cause severe phenotype.
Methods And Results: The PCSK9 patients, when compared with the LDLR patients, were younger at presentation (20.8+/-14.
Scott syndrome (SS) is a bleeding disorder characterized by a failure to expose phosphatidylserine (PS) to the outer leaflet of the platelet plasma membrane. Because the adenosine triphosphate (ATP)-binding cassette transporter A1 (ABCA1) is implicated in the exofacial translocation of PS, we assessed its role in the pathophysiology of a patient with SS. Substantially reduced levels of ABCA1 mRNA were found in the patient's leukocytes, compared with controls.
View Article and Find Full Text PDFTypically, autosomal dominant familial hypercholesterolaemia (FH) is caused by mutations in the low density lipoprotein (LDL) receptor or apolipoprotein B genes that result in defective clearance of plasma LDL by the liver, but a third gene (PCSK9), encoding a putative proprotein convertase, has recently been implicated. Two independent microarray studies support a role for PCSK9 in sterol metabolism and adenoviral-mediated over-expression of PCSK9 in mouse liver depletes hepatic LDL-receptor protein, but the mechanism by which dominant mutations cause human FH is unclear. We have identified the D374Y mutant of PCSK9 in three FH families of English origin; all 12 affected individuals have unusually severe hypercholesterolaemia and require more stringent treatment than typical FH patients, who are heterozygous for defects in the LDL receptor.
View Article and Find Full Text PDFThe upstream stimulatory factor (USF) proteins are ubiquitously expressed and, as such, represent unusual candidates for involvement in disorders of carbohydrate and lipid metabolism. Nonetheless, a recent study has reported an association between specific alleles of USF1 and familial combined hyperlipidaemia, a common disorder that substantially increases the risk of premature atherosclerotic cardiovascular disease. USF1 might, therefore, also contribute to the metabolic syndrome.
View Article and Find Full Text PDFPurpose Of Review: This review focuses on recent advances in the management of patients with homozygous familial hypercholesterolaemia, autosomal recessive hypercholesterolaemia and familial defective apolipoprotein B.
Recent Findings: Autosomal recessive hypercholesterolaemia has been described as a 'phenocopy' of homozygous familial hypercholesterolaemia. Although the clinical phenotypes are similar, autosomal recessive hypercholesterolaemia seems to be less severe, more variable within a single family, and more responsive to lipid-lowering drug therapy.