Publications by authors named "Rosselli F"

Article Synopsis
  • Next-generation sequencing (NGS) has helped uncover genetic causes of primary ovarian insufficiency (POI), while the reasons for diminished ovarian reserve (DOR) are less understood.
  • A 14-year-old patient with isolated DOR was found to have two frameshift mutations in the BRCA1 gene, but surprisingly showed no signs of Fanconi anemia (FA).
  • Despite the absence of FA symptoms, the patient's cells exhibited high chromosomal fragility, and studies indicated a shortened version of the BRCA1 protein was produced, suggesting that BRCA1 is crucial for ovarian health and functioning.
View Article and Find Full Text PDF
Article Synopsis
  • Abnormal levels of CDKN1A/p21 can lead to opposite effects in cells, either causing rapid growth in p53-deficient cancer cells or slowing growth in hematopoietic stem cells, potentially leading to bone marrow failure (BMF).
  • In Fanconi anemia (FA), p21 is overexpressed due to both p53 and the transcription factor microphthalmia (MITF), contributing to the disease's symptoms, but the exact mechanisms remain unclear.
  • The study finds that elevated p21 in FA cells is linked to chromatin changes and increased genetic instability, and that reactive oxygen species (ROS) are crucial for this overexpression, suggesting a complex interaction that worsens cell replication issues.
View Article and Find Full Text PDF
Article Synopsis
  • Second malignant neoplasm (SMN) poses a significant long-term risk for childhood cancer survivors and is influenced by genetic factors, alongside traditional treatments like chemotherapy and radiotherapy.
  • A systematic review analyzed eighteen studies exploring genetic components linked to SMN risk, encompassing various cancer types and focusing mainly on genes related to drug metabolism and DNA repair.
  • The variability in study designs and methods highlights the need for more standardized research, but the review offers a useful compilation of genetic variants associated with SMN risk, aiding future investigations.
View Article and Find Full Text PDF

Leukaemia is caused by the clonal evolution of a cell that accumulates mutations/genomic rearrangements, allowing unrestrained cell growth. However, recent identification of leukaemic mutations in the blood cells of healthy individuals revealed that additional events are required to expand the mutated clones for overt leukaemia. Here, we assessed the functional consequences of deleting the Fanconi anaemia A (Fanca) gene, which encodes a DNA damage response protein, in Spi1 transgenic mice that develop preleukaemic syndrome.

View Article and Find Full Text PDF

Background: In recent years, due to the epidemiological transition, the burden of very complex patients in hospital wards has increased. Telemedicine usage appears to be a potential high-impact factor in helping with patient management, allowing hospital personnel to assess conditions in out-of-hospital scenarios.

Methods: To investigate the management of chronic patients during both hospitalization for disease and discharge, randomized studies (LIMS and Greenline-HT) are ongoing in the Internal Medicine Unit at ASL Roma 6 Castelli Hospital.

View Article and Find Full Text PDF

Background: Hematopoietic stem cells (HSCs) reside in the bone marrow (BM) niche, which includes bone-forming and bone-resorbing cells, i.e., osteoblasts (OBs) and osteoclasts (OCs).

View Article and Find Full Text PDF

DNA replication is a tightly regulated fundamental process allowing the correct duplication and transfer of the genetic information from the parental cell to the progeny. It involves the coordinated assembly of several proteins and protein complexes resulting in replication fork licensing, firing and progression. However, the DNA replication pathway is strewn with hurdles that affect replication fork progression during S phase.

View Article and Find Full Text PDF

Described by Guido Fanconi almost 100 years ago, Fanconi anemia (FA) is a rare genetic disease characterized by developmental abnormalities, bone marrow failure (BMF) and cancer predisposition. The proteins encoded by FA-mutated genes (FANC proteins) and assembled in the so-called FANC/BRCA pathway have key functions in DNA repair and replication safeguarding, which loss leads to chromosome structural aberrancies. Therefore, since the 1980s, FA has been considered a genomic instability and chromosome fragility syndrome.

View Article and Find Full Text PDF

Definition of therapy-related myeloid neoplasms (TRMN) is only based on clinical history of exposure to leukemogenic therapy. No specific molecular classification combining therapy-related acute myeloid leukemia and therapy-related myelodysplastic syndromes has been proposed. We aimed to describe the molecular landscape of TRMN at diagnosis, among 77 patients with previous gynecologic and breast cancer with a dedicated next-generation sequencing panel covering 74 genes.

View Article and Find Full Text PDF

Fanconi anemia (FA) is a rare human genetic disorder characterized by bone marrow failure, predisposition to cancer and developmental defects including hypogonadism. Reproductive defects leading to germ cell aplasia are the most consistent phenotypes seen in FA mouse models. We examined the role of the nuclear FA core complex gene Fancg in the development of primordial germ cells (PGCs), the embryonic precursors of adult gametes, during fetal development.

View Article and Find Full Text PDF

Fanconi anaemia (FA) is the most frequent inherited bone marrow failure syndrome, due to mutations in genes encoding proteins involved in replication fork protection, DNA interstrand crosslink repair and replication rescue through inducing double-strand break repair and homologous recombination. Clinically, FA is characterised by aplastic anaemia, congenital defects and cancer predisposition. In in vitro studies, FA cells presented hallmarks defining senescent cells, including p53-p21 axis activation, altered telomere length, mitochondrial dysfunction, chromatin alterations, and a pro-inflammatory status.

View Article and Find Full Text PDF

Fanconi anemia (FA), the most common inherited bone marrow failure and leukemia predisposition syndrome, is generally attributed to alterations in DNA damage responses due to the loss of function of the DNA repair and replication rescue activities of the FANC pathway. Here, we report that FANCA deficiency, whose inactivation has been identified in two-thirds of FA patients, is associated with nucleolar homeostasis loss, mislocalization of key nucleolar proteins, including nucleolin (NCL) and nucleophosmin 1 (NPM1), as well as alterations in ribosome biogenesis and protein synthesis. FANCA coimmunoprecipitates with NCL and NPM1 in a FANCcore complex-independent manner and, unique among the FANCcore complex proteins, associates with ribosomal subunits, influencing the stoichiometry of the translational machineries.

View Article and Find Full Text PDF

Haematopoiesis, the process by which a restrained population of stem cells terminally differentiates into specific types of blood cells, depends on the tightly regulated temporospatial activity of several transcription factors (TFs). The deregulation of their activity or expression is a main cause of pathological haematopoiesis, leading to bone marrow failure (BMF), anaemia and leukaemia. TFs can be induced and/or activated by different stimuli, to which they respond by regulating the expression of genes and gene networks.

View Article and Find Full Text PDF

Fanconi anemia (FA) is an inherited syndrome of bone marrow failure (BMF) due to disrupted DNA repair. In this issue of Cell Stem Cell, Rodríguez et al. (2021) show that blood stem cells from FA patients have abnormal and inflammation-induced MYC expression, which promotes their proliferation in the face of increasing DNA damage.

View Article and Find Full Text PDF

DNA interstrand cross-links (ICLs) represent a major barrier blocking DNA replication fork progression. ICL accumulation results in growth arrest and cell death-particularly in cell populations undergoing high replicative activity, such as cancer and leukemic cells. For this reason, agents able to induce DNA ICLs are widely used as chemotherapeutic drugs.

View Article and Find Full Text PDF

Tumor hypoxia-induced downregulation of DNA repair pathways and enhanced replication stress are potential sources of genomic instability. A plethora of genetic changes such as point mutations, large deletions and duplications, microsatellite and chromosomal instability have been discovered in cells under hypoxic stress. However, the influence of hypoxia on the mutational burden of the genome is not fully understood.

View Article and Find Full Text PDF

Somatic hypermutation of immunoglobulin genes is a highly mutagenic process that is B cell-specific and occurs during antigen-driven responses leading to antigen specificity and antibody affinity maturation. Mutations at the Ig locus are initiated by Activation-Induced cytidine Deaminase and are equally distributed at G/C and A/T bases. This requires the establishment of error-prone repair pathways involving the activity of several low fidelity DNA polymerases.

View Article and Find Full Text PDF

Hematopoietic stem cell (HSC) attrition is considered the key event underlying progressive BM failure (BMF) in Fanconi anemia (FA), the most frequent inherited BMF disorder in humans. However, despite major advances, how the cellular, biochemical, and molecular alterations reported in FA lead to HSC exhaustion remains poorly understood. Here, we demonstrated in human and mouse cells that loss-of-function of FANCA or FANCC, products of 2 genes affecting more than 80% of FA patients worldwide, is associated with constitutive expression of the transcription factor microphthalmia (MiTF) through the cooperative, unscheduled activation of several stress-signaling pathways, including the SMAD2/3, p38 MAPK, NF-κB, and AKT cascades.

View Article and Find Full Text PDF

SMC5/6 function in genome integrity remains elusive. Here, we show that SMC5 dysfunction in avian DT40 B cells causes mitotic delay and hypersensitivity toward DNA intra- and inter-strand crosslinkers (ICLs), with smc5 mutants being epistatic to FANCC and FANCM mutations affecting the Fanconi anemia (FA) pathway. Mutations in the checkpoint clamp loader RAD17 and the DNA helicase DDX11, acting in an FA-like pathway, do not aggravate the damage sensitivity caused by SMC5 dysfunction in DT40 cells.

View Article and Find Full Text PDF

Fanconi Anemia (FA), due to the loss-of-function of the proteins that constitute the FANC pathway involved in DNA replication and genetic stability maintainance, is a rare genetic disease featuring bone marrow failure, developmental abnormalities and cancer predisposition. Similar clinical stigmas have also been associated with alterations in the senescence program, which is activated in physiological or stress situations, including the unscheduled, chronic, activation of an oncogene (oncogene induced senescence, OIS). Here, we wanted to determine the crosstalk, if any, between the FANC pathway and the OIS process.

View Article and Find Full Text PDF
Article Synopsis
  • * Methods: The study involved using stimulated blood lymphocytes for cytogenetic analysis and whole exome sequencing (WES) to identify genetic mutations, followed by Sanger sequencing for validation.
  • * Results: A 6-year-old boy from a consanguineous family was diagnosed with TRMA after WES revealed a new mutation in the SLC19A2 gene, marking a significant contribution to understanding the genetic basis of the disorder
View Article and Find Full Text PDF

In rodents, the progression of extrastriate areas located laterally to primary visual cortex (V1) has been assigned to a putative object-processing pathway (homologous to the primate ventral stream), based on anatomical considerations. Recently, we found functional support for such attribution (Tafazoli et al., 2017), by showing that this cortical progression is specialized for coding object identity despite view changes, the hallmark property of a ventral-like pathway.

View Article and Find Full Text PDF

Some regions of the genome, notably common fragile sites (CFSs), are hypersensitive to replication stress and often involved in the generation of gross chromosome rearrangements in cancer cells. CFSs nest within very large genes and display cell-type-dependent instability. Fragile or not, large genes tend to replicate late in S-phase.

View Article and Find Full Text PDF