Publications by authors named "Rossella Tarallo"

We have demonstrated that amide-based dendrimers functionalized with the membrane-interacting peptide gH625 derived from the herpes simplex virus type 1 (HSV-1) envelope glycoprotein H enter cells mainly through a non-active translocation mechanism. Herein, we investigate the interaction between the peptide-functionalized dendrimer and liposomes composed of PC/Chol using fluorescence spectroscopy, isothermal titration calorimetry, and surface plasmon resonance to get insights into the mechanism of internalization. The affinity for the membrane bilayer is very high and the interaction between the peptide-dendrimer and liposomes took place without evidence of pore formation.

View Article and Find Full Text PDF

This contribution reports the synthesis of a poly(amide)-based dendrimer functionalized at the termini with a membrane-interacting peptide derived from the herpes simplex virus (HSV) type 1 glycoprotein H, namely gH625-644. This peptide has been shown to interact with model membranes and to inhibit viral infectivity. The peptidodendrimer inhibits both HSV-1 and HSV-2 at a very early stage of the entry process, most likely through an interaction with the viral envelope glycoproteins; thus, preventing the virus from coming into close contact with cellular membranes, a prerequisite of viral internalization.

View Article and Find Full Text PDF

Herpes simplex virus (HSV) is a significant human pathogen causing mucocutaneous lesions primarily in the oral or genital mucosa. Although acyclovir (ACV) and related nucleoside analogs provide successful treatment, HSV remains highly prevalent worldwide and is a major cofactor for the spread of human immunodeficiency virus. Encephalitis, meningitis, and blinding keratitis are among the most severe diseases caused by HSV.

View Article and Find Full Text PDF

Gram negative bacteria have evolved many mechanisms of attaching to and invading host epithelial and immune cells. In particular, many outer membrane proteins (OMPs) are involved in this initial interaction between the pathogen and their host. The outer membrane (OM) of Gram-negative bacteria performs the crucial role of providing an extra layer of protection to the organism without compromising the exchange of material required for sustaining life.

View Article and Find Full Text PDF

Many therapeutic drugs are excluded from entering the brain due to their lack of transport through the blood-brain barrier (BBB). The development of new strategies for enhancing drug delivery to the brain is of great importance in diagnostics and therapeutics of central nervous diseases. To overcome this problem, a viral fusion peptide (gH625) derived from the glycoprotein gH of Herpes simplex virus type 1 is developed, which possesses several advantages including high cell translocation potency, absence of toxicity of the peptide itself, and the feasibility as an efficient carrier for delivering therapeutics.

View Article and Find Full Text PDF

A poly(amide)-based dendrimer was synthesized and functionalized with the membrane-interacting peptide gH(625-644) (gH625) derived from the herpes simplex virus type 1 (HSV-1) envelope glycoprotein H, which has previously been shown to assist in delivering large cargoes across the cellular membrane. We demonstrate that the attachment of the gH625 peptide sequence to the termini of a dendrimer allows the conjugate to penetrate into the cellular matrix, whereas the unfunctionalized dendrimer is excluded from translocation. The peptide-functionalized dendrimer is rapidly taken into the cells mainly through a non-active translocation mechanism.

View Article and Find Full Text PDF

The molecular mechanism of entry of herpesviruses requires a multicomponent fusion system. Cell invasion by Herpes simplex virus (HSV) requires four virally encoded glycoproteins: namely gD, gB and gH/gL. The role of gB has remained elusive until recently when the crystal structure of HSV-1 gB became available and the fusion potential of gB was clearly demonstrated.

View Article and Find Full Text PDF

Liposomes externally modified with the nineteen residues gH625 peptide, previously identified as a membrane-perturbing domain in the gH glycoprotein of Herpes simplex virus type I, have been prepared in order to improve the intracellular uptake of an encapsulated drug. An easy and versatile synthetic strategy, based on click chemistry, has been used to bind, in a controlled way, several copies of the hydrophobic gH625 peptide on the external surface of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPG)-based liposomes. Electron paramagnetic resonance studies, on liposomes derivatized with gH625 peptides, which are modified with the 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) spin label in several peptide positions, confirm the positioning of the coupled peptides on the liposome external surface, whereas dynamic light scattering measurements indicate an increase of the diameter of the liposomes of approximately 30% after peptide introduction.

View Article and Find Full Text PDF

Unlabelled: Cell membranes are impermeable to most molecules that are not actively imported by living cells, including all macromolecules and even small molecules whose physiochemical properties prevent passive membrane diffusion. However, recently, we have seen the development of increasingly sophisticated methodology for intracellular drug delivery. Cell-penetrating peptides (CPPs), short peptides believed to enter cells by penetrating cell membranes, have attracted great interest in the hope of enhancing gene therapy, vaccine development and drug delivery.

View Article and Find Full Text PDF