Aim: The intricate structure of the tooth root canals has a role in the colonization and biofilm formation in hidden areas that are hardly reached by standard endodontic treatments. This review aims at summarizing data from and studies for a better understanding of the application of cold atmospheric plasma (CAP) for the disinfection of dental root canals.
Methods: PubMed, Scopus, and Web of Science databases were screened.
Ciprofloxacin (CPX) is one of the most employed antibiotics in clinics to date. However, the rise of drug-resistant bacteria is dramatically impairing its efficacy, especially against life-threatening pathogens, such as . This Gram-negative bacterium is an opportunistic pathogen, often infecting immuno-compromised patients with severe or fatal outcomes.
View Article and Find Full Text PDFThe aim of this study was to evaluate the antimicrobial efficacy of an air gas soft jet CAP for its potential use in removing oral biofilms, given that plasma-based technologies have emerged as promising methods in periodontology. Two types of biofilms were developed, one by Streptococcus mutans UA 159 bacterial strain and the other by a complex mixture of saliva microorganisms isolated from a patient with periodontitis. This latter biofilm was characterized via Next Generation Sequencing to determine the main bacterial phyla.
View Article and Find Full Text PDFIntroduction: Bacterial Membrane Vesicles (MVs) play important roles in cell-to-cell communication and transport of several molecules. Such structures are essential components of Extracellular Polymeric Substances (EPS) biofilm matrix of many bacterial species displaying a structural function and a role in virulence and pathogenesis.
Areas Covered: In this review were included original articles from the last ten years by searching the keywords 'biofilm' and 'vesicles' on PUBMED and Scopus databases.
In recent years, there has been a considerable increasing interest in the use of the greater wax moth Galleria mellonella as an animal model. In vivo pharmacological tests, concerning the efficacy and the toxicity of novel compounds are typically performed in mammalian models. However, the use of the latter is costly, laborious and requires ethical approval.
View Article and Find Full Text PDFOuter membrane vesicles (OMVs) are spherical, lipid-based nano-structures, which are released by Gram-negative bacteria in both in vitro and in vivo conditions. The size and composition of OMVs depend on not only the producer bacterial species but also cells belonging to the same strain. The mechanism of vesicles' biogenesis has a key role in determining their cargo and the pattern of macromolecules exposed on their surface.
View Article and Find Full Text PDFDevelopment of dual-acting antibacterial agents containing Erlotinib, a recognized EGFR inhibitor used as an anticancer agent, with differently spaced benzenesulfonamide moieties known to bind and inhibit carbonic anhydrase (CA) or the antiviral Zidovudine. Through rational design, ten derivatives were obtained via a straightforward synthesis including a click chemistry reaction. Inhibitory activity against a panel of pathogenic carbonic anhydrases and antibacterial susceptibility of ATCC 43504 were assessed.
View Article and Find Full Text PDFThe antimicrobial properties of one of the most important secondary metabolites, Eugenol (), inspired us to design and synthesize three different series of derivatives enhancing its parent compound's anti- activity. Thus, we prepared semisynthetic derivatives through (A) diazo aryl functionalization, (B) derivatization of the hydroxy group of , and (C) elongation of the allyl radical by incorporating a chalcogen atom. The antibacterial evaluation was performed on the reference NCTC 11637 strain and on three drug-resistant clinical isolates and the minimal inhibitory and bactericidal concentrations (MICs and MBCs) highlight the role of chalcogens in enhancing the antimicrobial activity (less than 4 µg/mL for some compounds) of the scaffold (32-64 µg/mL).
View Article and Find Full Text PDFIntroduction: Human African Trypanosomiasis is a neglected disease caused by infection from parasites belonging to the species. Only six drugs are currently available and employed depending on the stage of the infection: pentamidine, suramin, melarsoprol, eflornithine, nifurtimox, and fexinidazole. Joint research projects were launched in an attempt to find new therapeutic options for this severe and often lethal disease.
View Article and Find Full Text PDFThe World Health Organization has indicated as a high-priority pathogen whose infections urgently require an update of the antibacterial treatments pipeline. Recently, bacterial ureases and carbonic anhydrases (CAs) were found to represent valuable pharmacological targets to inhibit bacterial growth. Hence, we explored the underexploited possibility of developing a multiple-targeted anti- therapy by assessing the antimicrobial and antibiofilm activities of a CA inhibitor, carvacrol (CAR), amoxicillin (AMX) and a urease inhibitor (SHA), alone and in combination.
View Article and Find Full Text PDFThe microbial biofilm has been defined as a "key virulence factor" for a multitude of microorganisms associated with chronic infections. Its multifactorial nature and variability, as well as an increase in antimicrobial resistance, suggest the need to identify new compounds as alternatives to the commonly used antimicrobials. The aim of this study was to assess the antibiofilm activity of cell-free supernatant (CFS) and its sub-fractions (SurE 10 K with a molecular weight <10 kDa and SurE with a molecular weight <30 kDa), produced by DSM 17938, vs.
View Article and Find Full Text PDFFor many decades, the proper functioning of the human body has become a leading scientific topic. In the course of numerous experiments, a striking impact of probiotics on the human body has been documented, including maintaining the physiological balance of endogenous microorganisms, regulating the functioning of the immune system, enhancing the digestive properties of the host, and preventing or alleviating the course of many diseases. Recent research, especially from the last decade, shows that this health-benefiting activity of probiotics is largely conditioned by the production of extracellular vesicles.
View Article and Find Full Text PDFThe encapsulation of peptides and proteins in nanosystems has been extensively investigated for masking unfavorable biopharmaceutical properties, including short half-life and poor permeation through biological membranes. Therefore, the aim of this work was to encapsulate a small antimicrobial hydrophilic peptide (H-Ser-Pro-Trp-Thr-NH2, FS10) in PEG-PLGA (polyethylene glycol-poly lactic acid-co-glycolic acid) nanoparticles (Nps) and thereby overcome the common limitations of hydrophilic drugs, which because they facilitate water absorption suffer from rapid degradation. FS10 is structurally related to the well-known RNAIII inhibiting peptide (RIP) and inhibits S.
View Article and Find Full Text PDFThis study evaluated the in vitro activity of the arylaminoartemisinin GC012, readily obtained from dihydroartemisinin (DHA), against clinical strains of () with different antibiotic susceptibilities in the planktonic and sessile state. The activity was assessed in terms of bacteriostatic and bactericidal potential. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined by the broth microdilution method.
View Article and Find Full Text PDFIt is widely accepted that production of biofilm is a protective mechanism against various type of stressors, including exposure to antibiotics. However, the impact of this structure on the spread of antibiotic resistance in is still poorly understood. Therefore, the aim of the current research was to determine the relationship between biofilm formation and antibiotic resistance of .
View Article and Find Full Text PDF, a Gram-negative neutrophilic pathogen, is the cause of chronic gastritis, peptic ulcers, and gastric cancer in humans. Current therapeutic regimens suffer from an emerging bacterial resistance rate and poor patience compliance. To improve the discovery of compounds targeting bacterial alternative enzymes or essential pathways such as carbonic anhydrases (CAs), we assessed the anti- activity of thymol and carvacrol in terms of CA inhibition, isoform selectivity, growth impairment, biofilm production, and release of associated outer membrane vesicles-eDNA.
View Article and Find Full Text PDFThe antimicrobial resistance is a topic of global interest in the treatment of wound infections. The goal of this retrospective study was both the identification of the microorganisms responsible for wound infections and the determination of their drug susceptibility pattern. The study was performed from 2017 to 2019 and included 239 patients.
View Article and Find Full Text PDFThe aim of the present special issue, proposed by two Co-Guest Editors with expertise in Clinical Microbiology and Medicinal Chemistry, is to collect and disseminate some of the most significant and innovative contributions focused on biofilm removal strategies, based on the use of natural or synthetic compounds/molecules/peptides or nanoparticles as well as biofilm formation inhibition aimed at both the control and monitoring of biofilm infections in medicine, food, industry, and natural environments [...
View Article and Find Full Text PDFOur understanding of the function of bacterial carbonic anhydrases (CAs, EC 4.2.1.
View Article and Find Full Text PDFFollowing a similar approach on carvacrol-based derivatives, we investigated the synthesis and the microbiological screening against eight strains of , and the cytotoxic activity against human gastric adenocarcinoma (AGS) cells of a new series of ether compounds based on the structure of thymol. Structural analysis comprehended elemental analysis and H/C/F NMR spectra. The analysis of structure-activity relationships within this molecular library of 38 structurally-related compounds reported that some chemical modifications of the OH group of thymol led to broad-spectrum growth inhibition on all isolates.
View Article and Find Full Text PDFBackground: Intestinal microbiota dysbiosis may enhance the carcinogenicity of colon cancer (CC) by the proliferation and differentiation of epithelial cells. Oral () and () have the ability to invade the gut epithelium, promoting tumor progression. The aim of the study was to assess whether the abundance of these odontopathogenic bacteria was associated with colon cancer.
View Article and Find Full Text PDFis a bacterium that is capable of colonizing a host for many years, often for a lifetime. The survival in the gastric environment is enabled by the production of numerous virulence factors conditioning adhesion to the mucosa surface, acquisition of nutrients, and neutralization of the immune system activity. It is increasingly recognized, however, that the adaptive mechanisms of in the stomach may also be linked to the ability of this pathogen to form biofilms.
View Article and Find Full Text PDF