Publications by authors named "Rossella Conti"

Granule cells of the cerebellum make up to 175,000 excitatory synapses on a single Purkinje cell, encoding the wide variety of information from the mossy fibre inputs into the cerebellar cortex. The granule cell axon is made of an ascending portion and a long parallel fibre extending at right angles, an architecture suggesting that synapses formed by the two segments of the axon could encode different information. There are controversial indications that ascending axon (AA) and parallel fibre (PF) synapse properties and modalities of plasticity are different.

View Article and Find Full Text PDF
Article Synopsis
  • Lysosomes are like recycling centers in cells; they break down damaged parts and help reuse nutrients.
  • A special protein called PQLC2 helps move certain nutrients in and out of lysosomes and signals when the cell needs more food.
  • Scientists studied how PQLC2 works and found that it has a unique way of transporting nutrients which can be affected by another nutrient called arginine, making it act a bit differently than expected.
View Article and Find Full Text PDF

Optogenetic neuronal network manipulation promises to unravel a long-standing mystery in neuroscience: how does microcircuit activity relate causally to behavioral and pathological states? The challenge to evoke spikes with high spatial and temporal complexity necessitates further joint development of light-delivery approaches and custom opsins. Two-photon (2P) light-targeting strategies demonstrated in-depth generation of action potentials in photosensitive neurons both and , but thus far lack the temporal precision necessary to induce precisely timed spiking events. Here, we show that efficient current integration enabled by 2P holographic amplified laser illumination of Chronos, a highly light-sensitive and fast opsin, can evoke spikes with submillisecond precision and repeated firing up to 100 Hz in brain slices from Swiss male mice.

View Article and Find Full Text PDF

Computer Generated Holography achieves patterned illumination at the sample plane through phase modulation of the laser beam at the objective back aperture. This is obtained by using liquid crystal-based spatial light modulators (LC-SLMs), which modulate the spatial phase of the incident laser beam. A variety of algorithms is employed to calculate the phase modulation masks addressed to the LC-SLM.

View Article and Find Full Text PDF

Background: The azygos venous system consists of the azygos vein on the right side and the hemiazygos and accessory hemiazygos on the left side. The azygos vein runs through the abdominal cavity along the right side of the vertebral bodies, in a cranial direction, passes through the diaphragm and reaches the mediastinum, where it forms the arch of the azygos which flows into the superior vena cava. Along its course, the azygos vein communicates with the intercostal veins on the right, the hemiazygos vein that collects blood from the left lower intercostal veins, and accessory hemiazygos vein that drains into the left upper intercostal veins.

View Article and Find Full Text PDF

The use of wavefront shaping to generate extended optical excitation patterns which are confined to a predetermined volume has become commonplace on various microscopy applications. For multiphoton excitation, three-dimensional confinement can be achieved by combining the technique of temporal focusing of ultra-short pulses with different approaches for lateral light shaping, including computer generated holography or generalized phase contrast. Here we present a theoretical and experimental study on the effect of scattering on the propagation of holographic beams with and without temporal focusing.

View Article and Find Full Text PDF

Migraine is a common disabling brain disorder. A subtype of migraine with aura (familial hemiplegic migraine type 1: FHM1) is caused by mutations in Ca(V)2.1 (P/Q-type) Ca(2+) channels.

View Article and Find Full Text PDF

The existence of spontaneous calcium transients (SCaTs) dependent on intracellular store activation has been reported in putative axonal terminals of cerebellar basket interneurons. We used the two-photon imaging technique to optically identify basket terminals in acute cerebellar slices of young rats (11-16 d old) and study the properties of SCaTs unambiguously localized in these regions. The whole-cell recording configuration and preloading technique were alternatively used to load the calcium-dependent dye in the interneuron and compare SCaTs with action potential evoked calcium transients.

View Article and Find Full Text PDF

Most of our knowledge about transmission at central synapses has been obtained by studying populations of synapses, but some important properties of synapses can be determined only by studying them individually. An important issue is whether a presynaptic action potential causes, at most, a single vesicle to be released, or whether multiquantal transmission is possible. Previous work in the CA1 region has shown that the response to stimulation of a single axon can be highly variable, apparently because it is composed of a variable number of quantal elements ( approximately 5 pA in amplitude).

View Article and Find Full Text PDF

Synapses in the CA1 region of the hippocampus undergo bidirectional synaptic modification in response to different patterns of activity. Postsynaptic Ca2+ elevation can trigger either synaptic strengthening or weakening, depending on the properties of the local Ca2+ signal. During the pairing protocol for long-term potentiation (LTP) induction, the cell is depolarized under voltage-clamp and is given low-frequency synaptic stimulation.

View Article and Find Full Text PDF