Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen. Its RNA genome consists of two negative-sense segments (L and M) with one gene each, and one ambisense segment (S) with two opposing genes separated by the noncoding "intergenic region" (IGR). These vRNAs and the complementary cRNAs are encapsidated by nucleoprotein (N).
View Article and Find Full Text PDFRift Valley fever virus (RVFV; genus Phlebovirus, family Phenuiviridae, order Bunyavirales) is a mosquito-borne zoonotic pathogen endemic in Africa. Its negative-stranded genomic RNA (vRNA) is divided into three segments termed L, M, and S. Both vRNAs and antigenomic cRNAs are encapsidated by viral nucleoprotein (N) to form nucleocapsids, which constitute the template for genome transcription and replication.
View Article and Find Full Text PDFTranscriptome-wide analysis of RNA-binding partners is commonly achieved using UV crosslinking and immunoprecipitation (CLIP). Individual-nucleotide-resolution CLIP (iCLIP)enables identification of the specific position of the protein-RNA interaction. In addition to RNA-binding proteins (RBPs), microRNA (miRNA)-mRNA interactions also play a crucial role in the regulation of gene expression.
View Article and Find Full Text PDFThe ATP-dependent nucleosome remodeler Mi-2/CHD4 broadly modulates chromatin landscapes to repress transcription and to maintain genome integrity. Here we use individual nucleotide resolution crosslinking and immunoprecipitation (iCLIP) to show that Drosophila Mi-2 associates with thousands of mRNA molecules in vivo. Biochemical data reveal that recombinant dMi-2 preferentially binds to G-rich RNA molecules using two intrinsically disordered regions of unclear function.
View Article and Find Full Text PDFThe TRIM-NHL protein Meiotic P26 (Mei-P26) acts as a regulator of cell fate in Its activity is critical for ovarian germline stem cell maintenance, differentiation of oocytes, and spermatogenesis. Mei-P26 functions as a post-transcriptional regulator of gene expression; however, the molecular details of how its NHL domain selectively recognizes and regulates its mRNA targets have remained elusive. Here, we present the crystal structure of the Mei-P26 NHL domain at 1.
View Article and Find Full Text PDFNatural circular RNAs have been found to sequester microRNAs and suppress their function. We have used this principle as a molecular tool and produced artificial circular RNA sponges in a cell-free system by transcription and ligation. Formerly, we were able to inhibit hepatitis C virus propagation by applying a circular RNA decoy strategy against microRNA-122, which is essential for the viral life cycle.
View Article and Find Full Text PDFNaturally occurring circular RNAs efficiently impair miRNA functions. Synthetic circular RNAs may thus serve as potent agents for miRNA inhibition. Their therapeutic effect critically relies on (i) the identification of optimal miRNA targets, (ii) the optimization of decoy structures and (iii) the development of efficient formulations for their use as drugs.
View Article and Find Full Text PDFBackground: The archaeal exosome is an exoribonucleolytic multiprotein complex, which degrades single-stranded RNA in 3' to 5' direction phosphorolytically. In a reverse reaction, it can add A-rich tails to the 3'-end of RNA. The catalytic center of the exosome is in the aRrp41 subunit of its hexameric core.
View Article and Find Full Text PDFLong noncoding RNAs (lncRNAs) are emerging as important regulators of diverse biological functions. Their role in pulmonary arterial hypertension (PAH) remains to be explored. To elucidate the role of TYKRIL (tyrosine kinase receptor-inducing lncRNA) as a regulator of p53/ PDGFRβ (platelet-derived growth factor receptor β) signaling pathway and to investigate its role in PAH.
View Article and Find Full Text PDFLarge RNA-binding complexes play a central role in gene expression and orchestrate production, function, and turnover of mRNAs. The accuracy and dynamics of RNA-protein interactions within these molecular machines are essential for their function and are mediated by RNA-binding proteins (RBPs). Here, we show that fission yeast whole-cell poly(A) RNA-protein crosslinking data provide information on the organization of RNA-protein complexes.
View Article and Find Full Text PDFCharacterized by their covalently closed structure and thus an elevated stability compared to linear RNA molecules, circular RNAs (circRNAs) form a novel class of mainly non-coding RNAs. Although the biological functions of naturally occurring circRNAs are largely unknown, they were reported to act as molecular sponges, sequestering microRNAs (miRNAs), resulting in a de-repression of target mRNAs. Taking these characteristics of naturally occurring circRNAs into account, artificial circRNAs could be a potential tool in molecular biology and medicine.
View Article and Find Full Text PDFBackground: Cancer still is one of the leading causes of death and its death toll is predicted to rise further. We identified earlier the potential tumour suppressor zygote arrest 1 (ZAR1) to play a role in lung carcinogenesis through its epigenetic inactivation.
Results: We are the first to report that ZAR1 is epigenetically inactivated not only in lung cancer but also across cancer types, and ZAR1 methylation occurs across its complete CpG island.
Mol Ther Nucleic Acids
September 2019
RNA-binding proteins (RBPs) are key regulators in post-transcriptional control of gene expression. Mutations that alter their activity or abundance have been implicated in numerous diseases such as neurodegenerative disorders and various types of cancer. This highlights the importance of RBP proteostasis and the necessity to tightly control the expression levels and activities of RBPs.
View Article and Find Full Text PDFBackground: Hepatitis C virus (HCV) infects human liver hepatocytes, often leading to liver cirrhosis and hepatocellular carcinoma (HCC). It is believed that chronic infection alters host gene expression and favors HCC development. In particular, HCV replication in Endoplasmic Reticulum (ER) derived membranes induces chronic ER stress.
View Article and Find Full Text PDFIn Drosophila, female development is governed by a single RNA-binding protein, Sex-lethal (Sxl), that controls the expression of key factors involved in dosage compensation, germline homeostasis and the establishment of female morphology and behaviour. Sxl expression in female flies is maintained by an auto-regulatory, positive feedback loop with Sxl controlling splicing of its own mRNA. Until now, it remained unclear how males prevent accidental triggering of the Sxl expression cascade and protect themselves against runaway protein production.
View Article and Find Full Text PDFHepatitis C virus (HCV) preferentially replicates in the human liver and frequently causes chronic infection, often leading to cirrhosis and liver cancer. HCV is an enveloped virus classified in the genus in the family and has a single-stranded RNA genome of positive orientation. The HCV RNA genome is translated and replicated in the cytoplasm.
View Article and Find Full Text PDFCircular RNAs (circRNAs) were recently described as a novel class of cellular RNAs. Two circRNAs were reported to function as molecular sponges, sequestering specific microRNAs, thereby de-repressing target mRNAs. Due to their elevated stability in comparison to linear RNA, circRNAs may be an interesting tool in molecular medicine and biology.
View Article and Find Full Text PDFImpaired or excessive growth of endothelial cells contributes to several diseases. However, the functional involvement of regulatory long non-coding RNAs in these processes is not well defined. Here, we show that the long non-coding antisense transcript of GATA6 (GATA6-AS) interacts with the epigenetic regulator LOXL2 to regulate endothelial gene expression via changes in histone methylation.
View Article and Find Full Text PDFNorthern blotting enables the specific detection and characterization of RNA molecules. Recently, circular RNAs (circRNAs) were described as a new class of cell type-specific noncoding RNAs. With the discovery of many novel circRNAs on the basis of high-throughput sequencing and bioinformatics, a solid biochemical approach is required to directly detect and validate specific circRNA species.
View Article and Find Full Text PDFMeeting the increasing food and energy demands of a growing population will require the development of ground-breaking strategies that promote sustainable plant production. Host-induced gene silencing has shown great potential for controlling pest and diseases in crop plants. However, while delivery of inhibitory noncoding double-stranded (ds)RNA by transgenic expression is a promising concept, it requires the generation of transgenic crop plants which may cause substantial delay for application strategies depending on the transformability and genetic stability of the crop plant species.
View Article and Find Full Text PDFAdenosine-to-inosine (A-to-I) RNA editing, which is catalyzed by a family of adenosine deaminase acting on RNA (ADAR) enzymes, is important in the epitranscriptomic regulation of RNA metabolism. However, the role of A-to-I RNA editing in vascular disease is unknown. Here we show that cathepsin S mRNA (CTSS), which encodes a cysteine protease associated with angiogenesis and atherosclerosis, is highly edited in human endothelial cells.
View Article and Find Full Text PDFCircular RNAs (circRNAs) constitute a new class of noncoding RNAs in higher eukaryotes generated from pre-mRNAs by alternative splicing. Here we investigated in mammalian cells the association of circRNAs with proteins. Using glycerol gradient centrifugation, we characterized in cell lysates circRNA-protein complexes (circRNPs) of distinct sizes.
View Article and Find Full Text PDFNon-coding RNAs (ncRNAs) in eukaryotes have recently developed to a very active research area in RNA biology, opening up new strategies for diagnosis and therapies of human disease. Here we introduce and describe the most important classes of eukaryotic ncRNAs: microRNAs (miRNAs), long non-coding RNAs (IncRNAs), and circular RNAs (circRNAs). We further discuss new RNA-based diagnostic and therapeutic concepts.
View Article and Find Full Text PDF